

Remote Monitoring and Control of Wireless Sensor �etworks

Răzvan Tătăroiu*, Dan Tudose**

* Computer Science Department, Polithenica University of Bucharest, Romania

(e-mail: razvan.tataroiu@cs.pub.ro)

** Computer Science Department, Polithenica University of Bucharest, Romania

(e-mail: dan.tudose@cs.pub.ro)

Abstract: Wireless sensor networks (WSNs) are employed in environmental monitoring, vehicle tracking,

building management, body monitoring and other applications. Power sources for network nodes are often

limited, which imposes restrictions on hardware resources and their use by the embedded software. In

developing more efficient software, it is useful to obtain performance metrics from all network nodes in a

centralized manner, as well as upgrading the embedded software or configuring its parameters. It is also

useful for a WSN user or administrator to obtain sensor readings and network health and performance

metrics, and to control actuators or change software behavior remotely. Remote access to the WSN is

especially important when nodes are physically inaccessible, mobile, or spread over a large geographical

area. We have developed a method for monitoring and controlling WSN nodes from a graphical interface

over an Internet connection, using the successful MonALISA framework. Data is gathered from the

network and stored in an Internet-based repository, from where it can be read remotely using a graphical

client program. A control service is accessed through the same client and routes commands and control

data to the nodes. The interface between the WSN and the Internet services contains an abstraction layer,

allowing uniform access to nodes built using various technologies and running different software and

protocols.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) or more generally

Wireless Sensor and Actuator Networks (WS&ANs) are

employed in a multitude of data acquisition, data processing,

and control applications (Callaway 2004). Their advantages

over traditional wired sensor and actuator networks include

node mobility, increased reliability (due to the possibility of

adaptive multi-hop data routing), easier installation and lower

deployment cost. There are situations where wired data

acquisition networks are impractical, such as environmental

monitoring over large areas, or „intelligent” wearable devices

forming so-called Body Sensor Networks.

A typical WSN node is capable of reading sensor

information, controlling external actuators, processing data

and communicating over a radio channel.

WSN nodes have specific hardware characteristics and

limitations. Most WSN nodes have limited available energy:

some rely on batteries and some employ environmental

energy harvesting techniques such as solar panels, wind- or

vibration-powered generators or thermoelectric generators

(Rahimi 2003). Therefore WSN nodes tend to be small

embedded systems with few processing resources and low bit

rate, low range radio links. Cost and size restrictions impose

similar constraints.

Fig. 1 depicts the main components of a WSN node. The

lightly-coloured ones are optional.

Fig. 1. WSN node structure

Hardware limitations give rise to specific software aspects.

Software running on WSN nodes must be power-aware.

Ideally the microcontroller spends most of the time in very

low-power sleep states, and the radio transmits data in small

bursts. Radio chips used on WSN nodes draw significant

current when transmitting data, but also when listening for

data, sometimes even more than when transmitting (Texas

Instruments 2007), therefore special low-duty-cycle

communication protocols and algorithms are ideally

employed, such that the radio is completely off most of the

time. Although all the nodes in a WSN can share a radio

channel, due to the low transmitter power only nodes in close

proximity can communicate. From a software standpoint this

is both beneficial (no interference between nodes spaced far

apart) and problematic (the need for multi-hop data routing

arises).

Traditional wired sensor networks usually employ one or

more master nodes with generous hardware resources and

energy available, such as a PC-type computer, therefore data

Micro-
controller

Power
Supply

Sensors Radio
Transceiver

External
Memory

Actuator
Control

processing usually happens on the master nodes. Wireless

sensor nodes on the other hand are more autonomous because

of the limited communication capacity between sensor nodes

and master nodes. In some cases WSNs are purely peer-to-

peer networks, lacking master nodes altogether. WSNs can

perform data processing and aggregation inside the network,

reducing the need to centralize large amounts of data. Given

the fact that processing data on the nodes and forward the

results between them can be energetically cheaper and more

reliable than sending all the raw sensor data to a central node,

advanced WSNs function as distributed processing systems.

From a user's standpoint, a WSN must provide a number of

services, such as reporting events of environmental pollution,

reporting the formation of traffic jams in a city, identifying a

person's urgent health problem, managing the air

conditioning and lighting in a building, etcetera. There is no

need for the end-user to receive real-time data from all

sensors in the network, but only information that is relevant.

Service-oriented WSNs use this approach - the nodes run

software services that read and process large amounts of

sensor data, as well as user commands, and send small

amounts of relevant data back to the user, thus utilizing the

radio channel efficiently. Service frameworks such as the

Tiny Task Network (Titan) define tasks (services) that have a

number of input and output pipes (Lombriser 2007). The

tasks are assigned by a scheduler to the available network

nodes according to the node location, available sensors and

actuators, node processor load and radio link quality, and the

tasks' pipes are linked according to a service graph. More

tasks can run on the same node, exchanging data through

local pipes, or pipes can be connected between nodes. Tasks

could also be moved between nodes in order to increase

efficiency or in the event of a node or link failure. This

functionality is transparent to the tasks.

2. WSN MONITORING REQUIREMENTS

From a software developer's standpoint, obtaining the lowest

possible power consumption and the highest data link

reliability is of significant importance. The engineer needs to

be able to monitor the performance of the system when

developing and testing software for WSN nodes. Indicators

such as processor and memory load, wakeup frequency,

duration of high-power states, amount of data sent and

received over the radio, are important in developing and

optimizing WSN software. These parameters need to be

known for all network nodes. Higher-level, service-specific

parameters, as well as lower-level parameters such as radio

link quality, are also important for the scheduling algorithms

in service-oriented networks and for self-healing or adaptive

routing algorithms. Raw sensor data also needs to be

monitored when debugging data processing software or when

configuring the network after installation. Also, some simple

applications only require obtaining periodic sensor readings

on a central computer. Network administrators and users may

also be interested in monitoring the health of the WSN nodes

(such as the remaining battery charge), sensor data or

performance metrics.

WSNs whose nodes are in inaccessible locations or spread

over a large area clearly require software provisions to allow

remote monitoring, without the need for physical access to

the nodes. Even when WSNs occupy a small area and their

nodes are easily accessible, connecting a dedicated

debugging interface to the nodes can be cumbersome and

expensive when the nodes are in large numbers.

When using a WSN or when developing software, the user

must also be able to control the network. Setting application-

specific software parameters, controlling actuators directly,

enabling and disabling services, upgrading the software

running on the nodes are examples where control of the WSN

is necessary.

WSN nodes are built by multiple vendors and may vary in

size, power consumption, microprocessor architecture or

sensor interfaces (Fig. 2). Many real-time operating systems

and network protocol stacks can run on WSN nodes, such as

TinyOS (Hill 2000), Contiki (Dunkels 2004), Sensinode

NanoStack, etc.

Fig. 2. Different WSN nodes: a) Atmel AVR RAVEN, b)

Berkeley Mica mote, c) Berkeley Spec mote, d) Tmote Sky

It is desirable to monitor and control WSNs built using

different technologies through a unified interface. In creating

and managing heterogeneous WSNs it is useful to collect

data from their homogeneous subnetworks and send data and

commands under a common interface.

3. SYSTEM ARCHITECTURE

We developed a method for monitoring and controlling a

variety of WSNs remotely over the Internet, based on the

successful MonALISA framework (Monitoring Agents using

a Large Integrated Services Architecture) (Newman 2003,

Legrand 2004). Our method uses an abstraction layer to

provide remote monitoring and control to essentially any kind

of WSN.

MonALISA is a joint development of CERN, Caltech and

UPB, typically used in monitoring large-scale systems such

as computer clusters. It can be used to monitor and control

any kind of system, including WSNs, as long as the

appropriate interfacing software is available.

In short, MonALISA employs repositories to which data can

be sent remotely using a portable software module named

ApMon (Application Monitor) and to which users can

connect with graphical client programs to view the data

remotely. The client software can also access control services

that run next to the data repositories using a secure,

authenticated protocol. The connections can be established

over the Internet, allowing user access to the WSN from any

location, or over a local area network. Because multiple

ApMon instances can run independently from the data

repository, a WSN composed of multiple islands, in different

locations, can be transparently managed as one single entity.

WSNs are typically accessed through one or more devices

generically called gateways or routers. These are typically

connected to large computers such as PCs, along with

specific drivers. Together with the driver, the gateway allows

user programs to access the WSN through standard Internet

protocols such as IPv6, or through special interface programs.

Fig. 3. WSN monitoring and control architecture

A monitoring service („monalisa-wsn”) runs on the computer

with the WSN gateway, calling WSN-specific programs that

report incoming data. These programs call the WSN drivers

and perform WSN-specific data formatting, while presenting

a unified interface to the monitoring service, effectively

forming an abstraction layer. The monitoring service then

uses ApMon to upload the data into a MonALISA repository

running on the same computer or on a remote server. Users

can then connect to the repository through a graphical client

program and retrieve the data and analyze it. Using

asymmetric key authentication, the user can connect to a

MonALISA WSN control module that runs next to the data

repository. A control service („monalisa-wsn-ctl”) runs next

to the WSN gateway and connects to the MonALISA control

module, enabling the user to send data and commands to the

WSN nodes. Fig. 3 shows a schematic diagram of the WSN

monitoring and control system.

Data in MonALISA is organized as parameter-value pairs

pertaining to a „host” or „node”. Hosts are grouped into

clusters, which are grouped into farms (Fig. 5). This stems

from its main usage as a grid monitoring framework. Farms,

clusters, hosts and parameters are identified by their name

and presented to the user in a hierarchical interface. The

application that uploads data is free to define any host name,

parameter name or parameter value. A convenient way of

using MonALISA to monitor WSNs is to present a WSN as a

host-type entity with a list of parameters. The names of the

parameters include a part which identifies the WSN node in

case of node-specific parameters. For example, if monitoring

temperature sensor readings from a WSN containing 4 nodes,

the parameters may be named „temperature1” to

„temperature4”. The user can filter parameters by name in

order to concentrate on data of immediate concern.

The parameters are sampled at defined intervals by the

monalisa-wsn program by polling the WSN, or they can be

reported by the WSN services automatically. In any case,

users can view parameter values in near-real-time, as well as

their history. Fig. 4 shows an example of monitoring a sensor

network composed of two islands located in two different

locations. Each island is connected to a PC via a gateway

device and each PC is running WSN-specific drivers and

polling adapters. One island is using Sensinode NanoSensor

hardware, which is readily capable of measuring temperature

and light, and the other is using Atmel Raven hardware

which only measures temperature readily. Numerous other

types of sensors can be added to both platforms.

Fig. 5 shows the MonALISA graphical client main window,

with our WSN selected and its monitored parameters listed.

Parameters numbered starting with 1 are the Raven

subnetwork, and parameters numbered starting from 5 are the

Sensinode subnetwork. Fig. 6 shows the recent history, up to

the current values, for some of the monitored parameters.

Fig. 4. Monitoring WSN islands installed in different

geographical locations

Fig. 5. MonALISA graphical user interface showing

monitored WSN parameters.

Fig. 6. Data aggregation example from geographically

distinct areas monitored by two WSN islands.

Although all WSN nodes can run an infinite variety of

custom-designed real-time operating systems and embedded

applications, a readily-available solution is often preferred.

For instance, the Sensinode NanoSensors can run the

Sensinode NanoStack, which is a 6LoWPAN implementation

(IPv6 over low-power wireless personal area networks). For

debugging purposes and simple applications, it can also run a

simpler version that uses MAC addressing instead of IPv6.

The Atmel Raven comes pre-programmed with a ZigBee-

based network stack that uses 16-bit node IDs for addressing.

The nodes have to explicitly associate with a coordinator

(gateway), unlike Sensinode NanoSensors which can be

detected by broadcast queries. The Raven can be

programmed with the Contiki operating system, which

implements 6LoWPAN, allowing IP addressing.

Above the network protocol, each case uses a different

application protocol for polling data from the sensors.

NanoSensors use two command-line programs called „nPing”

and „SSI-Browser” to detect sensor nodes and obtain sensor

values respectively. The Raven nodes running the default

software use a graphical program that connects to a „wireless

services” back-end. The protocols used are known. Contiki

uses a web interface accessible directly from a web browser

over IPv6, but can also be configured to use a protocol with

lower overhead.

Each case needs an adaptation program that is called from the

main monitoring service and returns parameter-value pairs in

a consistent, WSN-independent format. This abstraction layer

has been implemented and tested for the technologies listed

above. A version for the Titan framework can be developed,

which would allow monitoring performance parameters and

custom service data. Fig. 7 details the software architecture

of our solution.

The adaptation program can choose to be executed

periodically by monalisa-wsn and return a data point each

time, or to provide data points on the standard output

periodically. The first option is used when polling the WSN

and the second is used when the WSN itself pushes the data.

When polling the WSN, each node from a list is queried for

certain data such as sensor readings, performance metrics or

debugging information. The nodes are identified by their

address, which can have a wide variety of formats, depending

on the hardware and software used. A technology-specific

detection program, „detect”, is used to build that list, which

monalisa-wsn then uses transparently. The list can also be

built dynamically when nodes announce their presence to the

gateway, as is the case with the Raven platform. In this case

the corresponding „detect” runs permanently and updates the

list when needed.

Fig. 7. Detailed software architecture

The monalisa-wsn-control program and the MonALISA

control module provide remote control capabilities to the

WSN. A WSN-specific adaptation program is also needed.

User access to the control module is restricted using public

key authentication.

A generic control interface is provided, where global WSN

parameters, as well as node-specific parameters can be set.

Their values can be typically read back through the

monitoring interface. The parameter names, their data types

and acceptable ranges are specified in an XML file. An

example XML section is listed below, illustrating the

framework capabilities:

<wsn_control>

<global>

<param name="report_interval" type="int" unit="s">

<constraint type="le" value="3600"/>

<constraint type="gt" value="2"/>

</param>

</global>

<node type="raven">

<param name="node_name" type="string"/>

<param name="output0" type="bool"/>

<param name="pkt_forwarding" type="bool"/>

<param name="temp_alarm_enable" type="bool"/>

<param name="temp_alarm_low" type="int" unit="*C"/>

<param name="temp_alarm_high" type="int" unit="*C"/>

</node>

</wsn_control>

In this example, a global parameter named „report_interval”

sets the polling period for data monitoring, in seconds,

limited between 2 and 3600. Each Raven node can have a

user-friendly name assigned, possibly suggesting its location

or designated function. It's open-collector actuator control

output can be enabled or disabled. It can be configured to

forward data packets from farther nodes to the gateway. A

temperature alarm service can be started on selected nodes,

which in this example would sound the buzzer fitted to the

node in case the measured temperature exceeds the settable

high or low thresholds.

Where a parameter-based control interface is not sufficient, a

command-line interface is provided, which is directly linked

to the WSN-specific adaptation software without further

processing by the control framework. This can be used to

upgrade the software running on the nodes, for instance, by

sending a .hex memory image file to the adaptation program.

In order to provide increased uptime, a supervisor program

can watch that the various components of the framework are

running correctly. It can for instance restart programs that

have crashed or locked, such as the WSN driver (Sensinode

for example uses a stand-alone process as a driver, to which

the other programs connect through sockets), the node

detection program or the main monalisa-wsn program.

It is important that the WSN monitoring service be able to

run on a large variety of computer systems. Some WSNs for

example are not connected to a PC, but use an embedded

system such as an ATNGW100 for remote access. ApMon

and monalisa-wsn are written in Perl, which is a portable

scripting language. Perl can run on a large variety of

computers, including embedded systems. The WSN drivers

are usually written in C and can be compiled for mostly any

system if their source code is available. The abstraction layer

is written in Perl, Python and Unix shell, making it also

highly portable.

The MonALISA graphical client (Fig. 5, Fig. 6) is written in

Java, therefore it is capable of running on any modern PC

operating system.

4. CONCLUSIONS

The capability to monitor and control WSN nodes and WSNs

as a whole, without physical access to the nodes, from any

remote location, is important when developing WSN

software and when administering or using the WSN.

We developed a framework for monitoring and controlling

WSNs through a uniform interface, independent of their

hardware or software technologies. The framework allows

monitoring of low- and high-level parameters and

performance indicators for each WSN node. The framework

allows parameter-based control of each WSN node, as well as

console-based control for complex tasks. The framework also

allows managing isolated WSN islands as a single entity.

The framework consists of WSN-independent programs and

an abstraction layer composed of WSN-specific adaptation

programs. These programs are written in a portable fashion,

allowing them to be compiled and run on PC-class systems as

well as embedded, resource-limited systems.

5. ACKNOWLEDGMENTS

Research for this paper is ongoing and is motivated by the

authors’ participation to the SENSEI (Integrating the

Physical with the Digital World of the Network of the Future)

Integrated Project in the EU's Seventh Framework

Programme, in the ICT (Information and Communication

Technologies). Thematic Priority of Challenge 1: Pervasive

and Trusted Network and Service Infrastructures: ICT-

2007.1.1: The Network of the Future.

REFERENCES

Callaway E.. (2004). Wireless Sensor Networks:

Architectures and Protocols, CRC Press.

Dunkels A., Grönvall B, and Voigt T. (2004). Contiki - a

Lightweight and Flexible Operating System for Tiny

Networked Sensors. In: IEEE Emnets 2004.

Dunkels A., Vasseur JP.(2008). IP for Smart Objects, Internet

Protocol for Smart Objects (IPSO) Alliance
Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister K.

(2000). System architecture directions for networked

sensors. In: ACM SIGPLA5 5otices, ACM, New York.

Lombriser C., Roggen D., Stäger M. and Tröster G (2007).

Titan: A Tiny Task Network for Dynamically

Reconfigurable Heterogeneous Sensor Networks. In:

Kommunikation in Verteilten Systemen (KiVS). Springer

Berlin Heidelberg, Berlin

Newman H.B., Legrand I.C., Galvez P., Voicu R., Cirstoiu C.

(2003). MonALISA: A Distributed Monitoring Service

Architecture. CHEP03, La Jolla, California

Newman H.B., Legrand I.C., Voicu R., Cirstoiu C., Grigoras

C., Toarta M., Dobre C. (2004). MonALISA: An agent

based, dynamic service system to monitor, control and

optimize grid based applications. CHEP04, Interlaken,

Switzerland

Rahimi M., Shah H., Sukhatme G., Heidemann J., and Estrin

D. (2003). Studying the Feasibility of Energy Harvesting

in a Mobile Sensor Network. In: Proceedings of the

IEEE International Conference on Robotics and

Automation, pp. 19-24. Taipai, Taiwan.

Shelby Z. (2008a). Sensinode White Paper #1: IP-based

Wireless Embedded and Sensor Networks: The WiFi of

the Embedded World

Shelby Z. (2008b). Sensinode White Paper #2: Using

Sensinode Products to Develop 6LoWPAN Networks

Texas Instruments (2007). A True System-on-Chip solution

for 2.4 GHz IEEE 802.15.4 / ZigBee®.

http://focus.ti.com/docs/prod/folders/print/cc2430.html.

