
Sparrow: An Energy Harvesting Wireless Sensor
Node

Ioan Deaconu
Computer Science Department

University Politehnica Bucharest
Bucharest, Romania

ioan.deaconu@cti.pub.ro

Dan Ștefan Tudose
Computer Science Department

University Politehnica Bucharest
Bucharest, Romania

dan.tudose@cs.pub.ro

Abstract— Powering a device using solar generated energy can
be difficult, especially when that device is meant to function
constantly over a long period of time. In this article we present
an architecture for energy harvesting wireless sensor networks
that can be used to develop solar powered applications. It will
cover the hardware as well as the software requirements and
specifications for a truly autonomous energy harvesting wireless
sensor network. The hardware is composed of a new low power
node designed to be a powerful development platform and an
efficient energy harvesting module. The software is designed to
efficiently use the stored energy by implementing a lightweight
but powerful algorithm for scheduling data transmission.

Keywords— wireless sensor networks; energy harvesting;
scheduling; photovoltaic harvesting; dynamic scheduling

I. INTRODUCTION
A big problem encountered when developing an application

for Wireless Sensor Networks is autonomy. Big batteries can
be used to power the nodes, but because some can be deployed
in locations difficult to reach, the simple task of changing the
batteries becomes impossible.

The solution to this problem is powering the devices from
alternative sources of energy, a process called energy
harvesting. In recent years, energy harvesting has become more
and more used in the field of Wireless Sensor Networks. There
are plenty of alternative energy sources, such as solar cells,
vibration absorption generators, wind mills, thermoelectric
generators and others that can be used to power the nodes or
charge their batteries in order to become autonomous.

While the energy source problem has a solution, another
problem appears in the form of finding a method to store the
generated energy. Most solutions employ conventional
rechargeable batteries for this task, but the disadvantage of this
approach is that current technology allows only for a limited
number of recharge cycles, which dramatically reduces the
application lifetime to a couple of years [1]. An alternative to
the rechargeable battery are super capacitors, which offer a
lifetime measured in decades or hundreds of thousands of
recharge cycles, but are more expensive and still have a lower
energy density than conventional rechargeable batteries.

In order to alleviate this energy density issue, sensor nodes
can employ a scheduling algorithm which runs in conjunction

with a duty cycling scheme. The main goal of the algorithm is
to maintain functionality of the sensor node in situations of
energy scarcity by actively adapting its transmission and
sensing tasks and alternating them with periods of low-power
sleep. This is achieved by dynamically varying the frequency
with which the node performs various tasks or sends data.

In this article we will describe the architecture of an Energy
Harvesting Wireless Sensor Network (EHWSN). We will
present a new node and development platform, the Sparrow R,
which is specifically designed for low power operations and
the problems encountered when creating an EHWSN
application. As the final part of the architecture, we developed
an efficient but lightweight algorithm for efficiently using
stored energy.

II. RELATED WORK
Energy harvesting is a technique that has been the topic of

multiple studies in conjunction with wireless sensor networks.
The most promising technology for energy harvesting remains
the use of photovoltaic panels, both in terms of cost and of
energy conversion efficiency. However, this solution has the
disadvantage of not providing a constant flow of energy, being
subject to diurnal and seasonal variations. In this section we
will present the current state of the art in solar powered
EHWSN.

A. Predicting generated energy
Due to the fact that solar energy is not constant, in order to

predict the generated energy, a history of past-days weather
conditions or generated energy must be taken into account. The
state-of-the- art algorithm for this is Weather-Conditioned
Moving Average (WCMA) [2]. In order to predict the
generated energy in the next hour, it needs to keep a history of
generated energy for the past six days. The results of the
algorithm are shown to be precise, with an average error of
9.8% in 45 days of testing.

Unfortunately, the algorithm requires the continuous
measurement of the generated energy in order to have an exact
history for the past number of days. Because of this, the
algorithm is not feasible in applications where the sensor node
has low energy storage capabilities and spends most of its
operational lifetime in a low-power sleep state. A simpler

mailto:ioan.deaconu@cti.pub.ro
mailto:dan.tudose@cs.pub.ro

solution for hardware as well as software must be found for
those applications.
B. Using stored energy

In order to compensate for the variations in energy
harvesting for photovoltaic systems, transfer speed scheduling
algorithms have been developed.

The common approach to optimal packet scheduling is
using a water-filling algorithm [3], [4], where the time is
divided into slots and given a level of energy to be used in that
slot. For better power optimization, this approach is modified
into backward water-filling, directional water-filling and
generalized iterative water-filling [5] for offline (deterministic)
scenarios. Real world applications are stochastic, so in order to
simulate online scenarios, Gaussian noise is added. The
algorithms that can be used in this case are constant water level
policy, energy adaptive water-filling [6] and time-energy
adaptive water-filling [7]. Because these are complex
algorithms, simpler ones have been attempted, such as fuzzy
power management [8], where a table with predetermined
levels is used as the main policy. This means that the above
algorithms will work best in high power scenarios, where
leakage currents of the sensor node electronics are small
enough to be considered non-existent. Furthermore, the results
of all the algorithms were obtained using simulated data with
programs such as GreenCastalia [9]. These algorithms do not
take into account parameters such as circuit leakage or shifts in
power consumption due to temperature variation, which are
important to a real-life deployment scenario for a sensor
network and can cause significant discrepancies between the
theoretical model and the actual implementation.

All the above algorithms need to measure how much
energy the node is using when performing different tasks. As
previously mentioned, this is not feasible in real conditions
because precise current measurement can only be performed at
a high sampling rate, which in turn consumes a large amount of
energy.

Considering the presented problems, we developed a
lightweight and efficient prediction algorithm that relies only
on the voltage of the storage capacitor as a metric for energy
production.

III. SYSTEM ARCHITECTURE
The majority of sensor nodes that are available as research

or commercial platforms are built around 8-bit processor cores
[10][11]. Few attempts have been made using the newer ARM
Cortex-M3 32-bit architecture, the benefits of which are
presented in this study [12], where a 4.6 throughput can be
obtained compared to an 8-bit CPU over the same wireless
network. Unfortunately, the downside is higher power
consumption that can create difficulties for certain power
supplies and energy sources. Even though the same average
power consumption can be obtained for nodes using this ARM
architecture, due to higher power consumption peaks the
voltage of the power supply can drop to a level that is lower
than the minimum voltage required for the node to function.

We propose a new approach in designing a wireless sensor
node by using a state-of-the-art microcontroller, the ARM

Cortex-M0+ 32-bit Atmel SAMR21. We will present its
advantages compared to our previous sensor node platform,
the Sparrow V4 [11], which is based on an 8-bit MCU, the
Atmega128RFA1.

TABLE I. COMPARISON BETWEEN ATMEGA128RFA1 AND ATSAMR21

Criteria Atmega128RFA1 ATSAMR21
Speed 16MHz 48MHz
CPU Architecture AVR 8-bit Cortex M0+ 32-bit
CPU Power 4.1mA 6.5mA
Flash 128kB 256kB
RAM 16kB 32kB
Flash Endurance 50000 150000
Rx Consumption 12.5mA 11.8mA
Tx Consumption 14.5mA@3.5mA 13.8mA@4dBm
Receiver Sensitivity -100dBm -101dBm
Tx Max Power 3.5dBm 4dBm
Package QFN64 QFN48 or QFN32

TABLE II. SPEED COMPARISON

Criteria Atmega128RFA1 ATSAMR21 Total
Advantage

Advantage
per MHz

Integer
Iterations

44890 403950 8.99 2.99

Branch
Iterations

27782 93552 3.36 1.12

While(1)
Iterations

191536 6693086 34.94 11.64

A. Performance
We present in Table 1 and 2 the main differences between

the two MCUs, SAMR21 and ATmega128RFA1 [13].

Being a 32-bit architecture, even though SAMR21 requires
5.5mA compared to 4.1mA of the Atmega128RFA1, for simple
32-bit integer addition, the SAMR21 consumes only 49nJ per
iteration while the 8-bit microcontroller consumes 274nJ,
which is almost five times more. Considering performance
figures, the SAMR21 was 9 times faster with 403950 iterations
per second while Atmega128RFA1 managed only 44890
iterations.

Testing the performance of the branch predictor, revealed
that the M0+ is only 12% better than the older 8-bit counterpart
when running at the same speed, but due to the frequency
difference, it ends up being 3.36 times faster.

The SAMR21 microcontroller is very similar to SAMD21
[14], which is used in the Arduino Zero boards. This allowed
us to use an existing code-base for the development of the
project. Even though the Arduino software is well designed, it
was not designed with low power consumption in mind. We
will describe some of the problems encountered in the current
software stack.

TABLE III. ENERGY EFFICIENCY COMPARISON

Criteria Atmega128RFA1 ATSAMR21
Integer Iteration 274nJ 49nJ
Branch Iteration 442nJ 208nJ
While(1) Iteration 64nJ 2.9nJ

The first problem we noticed was that the Arduino Zero
board had no sleep functionality implemented. The ideal idle

current consumption should have been less than 5µA, but the
actual current consumption of the board was around 350µA.
Further tests revealed that the USB device was always
initialized, which accounted for the extra 200µA. Almost all of
the remaining 145µA came from default initializations of the
pins as input pins and the clock generators which were never
disabled at start-up.

Fig. 1. The Sparrow R Wireless Sensor Node

We managed to a decrease the idle current consumption for
the platform from 350µA to about 30µA @ 3.2V, but it is still
far from ideal. Surprisingly, lowering the voltage from 3.2V to
1.8V leads to a decrease in sleep current consumption down to
3.3µA. When examining the power trace using a digital
oscilloscope, we found that a very low frequency clock remains
active, which at 3.2V has high spikes in power consumption.

After optimizing idle current consumption, we focused on
the consumption in active mode. Even though it was specified
in the official datasheet that this would be around 70µA/MHz
@ 3.2V, or around 3.5mA@48MHz, we measured that the
microcontroller actually drew 8mA@48MHz. However, we
managed to reduce this figure to 5.5mA@48MHz, by
implementing the clock optimizations presented below.

The first modification was to change the clock of the
peripheral interfaces, instead of 48 MHz, we run them at 12
MHz. Also if peripherals are not used, we completely disable
them. Due to this, we ran into problems related to SERCOM
implementation, a generic module that handles USART, SPI
and I2C. It was working on Arduino Zero, because the CPU
and the BUS were configured to run at the same speed, but
because of previous clock source modifications, the SERCOM
did not set the correct speed. Also, there are 6 SERCOMs, and
instead of enabling the clock for each one only when it is used,
all of them were enabled, which lead to extra power
consumption during run time.

B. Hardware
Because not all sensors are designed to run at 1.8V up

to 3.2V, we need to be able to dynamically change the
operating voltage of the node. We used the TPS62742, a

step-down switching DC/DC converter with up to 90%
efficiency, voltage selectable output from 1.8V to 3.2V in
200mV steps, 360nA quiescent current and a special MCU
controllable load output, with push-pull transistors. In inactive
state the load line is pulled to GND and when active is pulled
to VCC. When active, it consumes 12µA, but compared to the
controlled sensors, this should not be noticeable. Because
this allows to completely power down the sensors, the
”stand-by” current consumption is 0µA and it also eliminates
the previous design problem of a floating GND which
allowed the sensors to be powered parasitically from the data
pins even when disabled.

The node can be connected to an extension daughter
board which fully respects the Arduino pinout. The advantage
of this approach is that it allows to easily test and prototype
new configurations in order to prepare the project in the
shortest time possible. Also existing hardware designed for
Arduino can work with this board, which increases the
number of compatible hardware. In total, 20 I/O pins are
available, pins that can be used for connecting sensors, either
on the daughter board, or directly on a specially designed
board.

A jumper can select whether the Node is powered from
USB or from other 2.1V+ voltage supplies. Through the same
jumper a power measuring device can be used to monitor the
total power consumption. In case the DC/DC converter is not
needed the node can use other power sources.

C. Software
We implemented new modules designed for low power

such as sleep and power management, which can dynamically
scale the running voltage of the node between 1.8V to 3.2V
and enable or disable the voltage supply to the sensors. This
allows the user to select which voltage is better required for a
certain application. For example, some sensors must be
powered at exactly 2.8V while others at 2.5V or lower. The
application can dynamically switch between a low-voltage
state, in which the processor is kept most of the time in order to
conserve power to a higher voltage, which is required for
switching on and communicating with the sensors.

The radio transceiver is very similar to an AT86RF233, but
it is completely integrated into the microcontroller die. The
module for RF was written and integrated in the core of the
platform and was based on an Arduino library [15].

For timekeeping when sleeping, a Real-Time Clock (RTC)
functionality was implemented. Besides keeping the time, the
RTC provides alarm interrupts for a pre-configured date, which
can be set to be triggered every minute, every hour, every day,
every month, every year, or only once. Together with another
peripheral named EventSys, periodic interrupts are provided
and the interrupt interval can range from once every second up
to 128 times per second, with increments of power base 2.

Also, in order to provide a minimum level of fault tolerance
and resilience, a watchdog functionality was also implemented,
in order to avoid code lock-up or hardware failure due to
extreme environment conditions.

The node has native USB which allows for code upload and
also serial communication interface over a Composite Device
Class (CDC). Due to the fact that no extra components are
needed, the same node can be easily configured to act as a
gateway or as a leaf.

D. Algorithm
As seen in the previous section, state-of-the-art algorithms

require measurement of the consumed energy in order to
dynamically schedule transmission tasks. This is not, however,
applicable in a real-world scenario, where numerous variables
can generate errors in the estimated energy left in the storage
element:

• Variations in temperature can alter the total stored
energy

• Leakage currents can vary due to different subsystems
of the node being turned on or off during normal
operation

• Variations in parameters between supposed identical
super-capacitors.

In order to simplify the algorithms for the user to deploy
them faster in real EHWSN applications, we have implemented
and tested a simple dynamic scheduling algorithm for the
transferred data.

The algorithm can be considered to implement a basic
water-filling policy, with one slot that is the current discharge
period. This simplifies the implementation and reduces the
computational requirements. It is designed to be run with an
energy harvesting module that has a super capacitor as energy
storage unit. Because of this, we simplified the predictor in
order to obtain O(1) complexity.

LISTING 1. TRANSFER SPEED SCHEDULING ALGORITHM

1: procedure ALGORITHM(voltage, time)
2: determine current state Charging/Discharging
3: if changed from Charging to Discharging then
4: Calculate new target time
5: Calculate frequency based on total number of sent data
6: changedVoltage ← voltage
7: end if
8: if current state is Discharging then
9: if voltage<M IN COM P U T E DELT A then
10: sendFreq←sendFreq/2
11: end if
12: deltaVoltage ← changedVoltage − voltage
13: if deltaVoltage>M IN VOLTAGE DELTA then
14: Estimate the new remaining time
15: Calculate remaining time until deadline
16: newSendF req ←sendF req∗estimated ∗
percentagePenalty/remaining
17: if newSendF req! = sendF req then
18: Change the speed
19: changedV oltage ← voltage
20: end if
21: end if

22: end if
23: end procedure

The supercapacitor does not exhibit a linear discharge
curve, but during the tests we have conducted, the error is small
enough to allow us to estimate the remaining time without the
requirement of measuring how much energy was stored in the
capacitor and how much energy was consumed. Fig. 3 is an
example of how the supercapacitor will discharge.

Fig. 2. 1F Electrolytic Double Layer capacitor discharge curve

The algorithm has a total time that it needs to respect,
while trying to maximize the total number of packets sent. In
order to achieve these two simple requirements, it dynamically
estimates the remaining time and, according to the difference
between the estimation and the remaining time, it keeps the
same transmission frequency or alters it accordingly. The
algorithm is very versatile, with many customization options,
depending on the type of hardware and requirements of the
application in which it is used.

The different parameters that can be modified are presented
in the list below:

• DEFAULT TARGET TIME - the default deadline for
the algorithm, dynamically adjusted after one iteration.

• TIME PERCENTAGE PENALTY - alters the
estimated time by either reducing it or increasing it.

• TIME EXTRA REMAINING - when computing the
new frequency, this is added to the remaining time in
order to allow for a longer running period.

• SPEED DECREASE PENALTY - when the
transmission speed is decreased, a penalty must be
applied.

• MIN SEND FREQ - minimum packets per hour for
the algorithm. Minimum value that can be set is one
per hour.

• MAX SEND FREQ - maximum packets per hour for
the algorithm. Maximum value that can be set is 3600
per hour.

• DEFAULT SEND FREQ - the default packets per hour
before the algorithm stabilizes.

• MIN VOLTAGE COMPUTE - the minimum voltage
under which the algorithm will stop adjusting the
frequency

• MIN VOLTAGE - the minimum voltage considered
by the algorithm when computing the estimated
time and the new send frequency.

• MIN VOLTAGE DELTA - the delta voltage over
which the algorithm will start to compute the estimated
time and the new send frequency.

The algorithm will recalculate the new deadline every time,
so in the case of diurnal variations in sun-rise and sun-set, the
target time will be automatically adjusted. In order to
compensate for the situation in which the sun will rise later, the
algorithm always tries to keep the node alive for a longer time
than the given deadline. The extra time the node can be kept
alive can vary according to the deadline, from 10 minutes for a
4 hours deadline, to 1 hour for a 12 hour deadline.

IV. RESULTS
Our goal was to deliver a solution that could be deployed in

an application as fast as possible, so instead of running
software simulations, we decided to implement and test the
algorithm on the new node Sparrow R. The algorithm is
implemented in C, and compiled with gcc-arm-none-eabi-
4.8.3-2014q1 on Arduino 1.6.4.

We selected two super-capacitors of 1F/5V rating, one built
on Electrolytic Double Layer (EDLC) technology and other
using Aerogel technology. We fully charged the capacitor and
then let the algorithm decide how fast the data should be
transmitted in order to reach the time deadline.

The only input needed is the current voltage of the
capacitor, read using a voltage divider that is controlled by an
N-MOS transistor in order to reduce the power dissipated by
the divider. The node will run a task that simulates sensor
readings and other processing through a delay of 100 ms. The
network is configured as single-hop, and the data sent through
the radio transceiver has a length of 45 bytes.

When beginning with a deadline of 4 hours, in the first run,
the node manages to execute 1593 transmission tasks and to
remain functional for a total time of 4 hours and 18 minutes.
The second run, with a new deadline of 4 hours and 11
minutes, the node ran 1631 transmission tasks for a total time
of 4 hours and 35 minutes. The results of the test are presented
in Fig. 3, were we can see that both runs have similar
frequency and discharge voltage curves.

With a longer, more realistic deadline of 8 hours, the node
managed to transmit 785 times for a total of 8 hours and 14
minutes.

Fig. 3. Two runs of the algorithm with EDLC capacitor and 4 hours
deadline

We can easily calculate the average power consumption of
the node for the 4 hour and 8 hour deadline scenarios. In both
scenarios, the supercapacitor that was powering the node
discharged from an initial voltage of 3.3V to 2.1V, the voltage
at which the node becomes powered-down. Therefore, the
energy available to the node is the same, and is calculated in
(1). Average power is deduced from this in equations (2) and
(3).

 E = Ei – Ef = CVi
2/2 – CVf

2/2 = 3.64J (1)

 P4h = E / T4h = 235µW (2)

 P8h = E / T8h = 122µW (3)

When the total running time is doubled, the average power
consumption is halved, proving that the algorithm is working.
Unfortunately, the total number of send data is twice as small,
which indicates that the combined power used by the node
when sleeping and the leakage of the capacitor is starting to
influence the total number of sent data. This is best shown by
the difference between the energy used to send 1 frame in the 4
hours situation compared to 8 hours.

We ran into problems when a longer deadline of 12 hours
was tested, mainly because the self-discharge of the capacitor
combined with the idle current consumption of the node is high
enough to waste more than 75% of the energy. This had a
significant impact on the total number of executed tasks. The
first run of the test send data 143 times and lasted for 13 hours
and 10 minutes. The second run started with a more realistic
speed of 10 task per hours instead of 600, but the total number
of sent data dropped to 18 with a total duration of 13 hours and
15 minutes.

Fig. 4. 1F Aerogel versus EDLC capacitor discharge tests

The 12 hours test revealed that a 1F capacitor is not
adequate and that a larger capacitor might be needed. Due to
the fact that we tested the node with two types of capacitors,
we wanted to determine if there was a difference between
them. The result of the experiment is given in Fig. 4, which
shows that the Aerogel capacitor had a lower voltage of
1950mV compared to the ELDC of 2050mV. However, the
EDLC capacitor managed to transmit more data than the
Aerogel, even when the algorithm was tweaked to take into
consideration the lower working voltage of the Aerogel
capacitor. The EDLC managed to send data 1642 times, while
the Aerogel capacitor managed only 1254 data transfers.

V. CONCLUSIONS
The main goal of this article was to present the complete

architecture of an Energy Harvesting Wireless Sensor Network.
We have presented a new wireless sensor node designed to be a
new development platform that can be used to bring new
energy harvesting applications to life. One of those applications
is using the nodes for indoor monitoring, where photovoltaic
harvesting is less efficient and the system is dynamically
varying the transmission speed in order to keep alive a node
until the energy source (super-capacitor) can be recharged. We
implemented an efficient duty-cycling algorithm for scheduling
data transmission in an energy-efficient manner, which we
deployed and tested on the node. The algorithm proved to be
able to keep the node alive and efficiently use all stored
harvested energy.

Because the algorithm only needs to read the voltage of the
capacitor, the hardware requirements are very small and it can
be easily deployed on existing hardware with little to no
modification.

REFERENCES
[1] Laura Marie Feeney, Lars Andersson, Anders Lindgren, Stina Starborg,

and Annika Ahlberg Tidblad. 2012. Using batteries wisely.
In Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems (SenSys '12). ACM, New York, NY, USA, 349-350.
DOI=http://dx.doi.org/10.1145/2426656.2426702

[2] J. R. Piorno, C. Bergonzini, D. Atienza, and T. S. Rosing. Predic-
tion and management in energy harvested wireless sensor nodes. In
Wireless Communication, Vehicular Technology, Information Theory

and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE
2009. 1st International Conference on, pages 6–10. IEEE, 2009.

[3] J. Yang and S. Ulukus. Optimal packet scheduling in a multiple
access channel with energy harvesting transmitters. Communications
and Networks, Journal of, 14(2):140–150, 2012.

[4] L. Huang and M. J. Neely. Utility optimal scheduling in energy-
harvesting networks. IEEE/ACM Transactions on Networking (TON),
21(4):1117–1130, 2013.

[5] Z. Wang, V. Aggarwal, and X. Wang. Iterative dynamic water-filling
for fading multiple-access channels with energy harvesting. Selected
Areas in Communications, IEEE Journal on, 33(3):382–395, 2015.

[6] O. Ozel, J. Yang, and S. Ulukus. Optimal broadcast scheduling for
an energy harvesting rechargeable transmitter with a finite capacity
battery. Wireless Communications, IEEE Transactions on, 11(6):2193–
2203, 2012.

[7] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener.
Transmission with energy harvesting nodes in fading wireless channels:
Optimal poli- cies. Selected Areas in Communications, IEEE Journal
on, 29(8):1732– 1743, 2011.

[8] F. A. Aoudia, M. Gautier, and O. Berder. Fuzzy power management
for energy harvesting wireless sensor nodes. In IEEE International
Conference on Communications (ICC16), 2016.

[9] D. Benedetti, C. Petrioli, and D. Spenza. Greencastalia: an energy-
harvesting-enabled framework for the castalia simulator. In
Proceedings of the 1st International Workshop on Energy Neutral
Sensing Systems, page 7. ACM, 2013.

[10] S. R. N. S. Mridula Maurya. Current wireless sensor nodes (motes):
Performance metrics and constraints. International Journal of
Advanced Research in Electronics and Communication Engineering,
2(1), 2013.

[11] A. Voinescu, D. Tudose, and D. Dragomir. A lightweight, versatile
gateway platform for wireless sensor networks. In Networking in
Education and Research, 2013 RoEduNet International Conference 12th
Edition, pages 1–4. IEEE, 2013.

[12] R. Jurdak, K. Klues, B. Kusy, C. Richter, K. Langendoen, and M.
Brünig. Opal: A multiradio platform for high throughput wireless
sensor net- works. Embedded Systems Letters, IEEE, 3(4):121–124,
2011.

[13] Atmega128rfa1 datasheet. http://www.atmel.com/Images/doc8266.pdf
[14] Atmel ATSAMD21 datasheet. http://www.atmel.com/images/atmel-

42181-sam-d21datasheet.pdf. Accessed: 2016-06-05.
[15] Arduino-at86rf233. https://github.com/msolters/arduino-at86rf233. Ac-

cessed: 2016-06-05.

http://www.atmel.com/Images/doc8266.pdf
http://www.atmel.com/images/

	I. Introduction
	II. Related Work
	A. Predicting generated energy
	B. Using stored energy

	III. System Architecture
	A. Performance
	B. Hardware
	C. Software
	D. Algorithm

	IV. Results
	V. Conclusions
	References

