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Abstract— Powering a device using solar generated energy can 
be difficult, especially when that device is meant to function 
constantly over a long period of time. In this article we present 
an architecture for energy harvesting wireless sensor networks 
that can be used to develop solar powered applications. It will 
cover the hardware as well as the software requirements and 
specifications for a truly autonomous energy harvesting wireless 
sensor network. The hardware is composed of a new low power 
node designed to be a powerful development platform and an 
efficient energy harvesting module. The software is designed to 
efficiently use the stored energy by implementing a lightweight 
but powerful algorithm for scheduling data transmission. 
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I.  INTRODUCTION 
A big problem encountered when developing an application 

for Wireless Sensor Networks is autonomy. Big batteries can 
be used to power the nodes, but because some can be deployed 
in locations difficult to reach, the simple task of changing the 
batteries becomes impossible. 

The solution to this problem is powering the devices from 
alternative sources of energy, a process called energy 
harvesting. In recent years, energy harvesting has become more 
and more used in the field of Wireless Sensor Networks. There 
are plenty of alternative energy sources, such as solar cells, 
vibration absorption generators, wind mills, thermoelectric 
generators and others that can be used to power the nodes or 
charge their batteries in order to become autonomous. 

While the energy source problem has a solution, another 
problem appears in the form of finding a method to store the 
generated energy. Most solutions employ conventional 
rechargeable batteries for this task, but the disadvantage of this 
approach is that current technology allows only for a limited 
number of recharge cycles, which dramatically reduces the 
application lifetime to a couple of years [1]. An alternative to 
the rechargeable battery are super capacitors, which offer a 
lifetime measured in decades or hundreds of thousands of 
recharge cycles, but are more expensive and still have a lower 
energy density than conventional rechargeable batteries. 

In order to alleviate this energy density issue, sensor nodes 
can employ a scheduling algorithm which runs in conjunction 

with a duty cycling scheme. The main goal of the algorithm is 
to maintain functionality of the sensor node in situations of 
energy scarcity by actively adapting its transmission and 
sensing tasks and alternating them with periods of low-power 
sleep. This is achieved by dynamically varying the frequency 
with which the node performs various tasks or sends data. 

In this article we will describe the architecture of an Energy 
Harvesting Wireless Sensor Network (EHWSN). We will 
present a new node and development platform, the Sparrow R, 
which is specifically designed for low power operations and 
the problems encountered when creating an EHWSN 
application. As the final part of the architecture, we developed 
an efficient but lightweight algorithm for efficiently using 
stored energy. 

II. RELATED WORK 
Energy harvesting is a technique that has been the topic of 

multiple studies in conjunction with wireless sensor networks.  
The most promising technology for energy harvesting remains 
the use of photovoltaic panels, both in terms of cost and of 
energy conversion efficiency. However, this solution has the 
disadvantage of not providing a constant flow of energy, being 
subject to diurnal and seasonal variations. In this section we 
will present the current state of the art in solar powered 
EHWSN. 

A. Predicting generated energy 
Due to the fact that solar energy is not constant, in order to 

predict the generated energy, a history of past-days weather 
conditions or generated energy must be taken into account. The 
state-of-the- art algorithm for this is Weather-Conditioned 
Moving Average (WCMA) [2]. In order to predict the 
generated energy in the next hour, it needs to keep a history of 
generated energy for the past six days. The results of the 
algorithm are shown to be precise, with an average error of 
9.8% in 45 days of testing. 

Unfortunately, the algorithm requires the continuous 
measurement of the generated energy in order to have an exact 
history for the past number of days. Because of this, the 
algorithm is not feasible in applications where the sensor node 
has low energy storage capabilities and spends most of its 
operational lifetime in a low-power sleep state. A simpler 
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solution for hardware as well as software must be found for 
those applications. 
B. Using stored energy 

In order to compensate for the variations in energy 
harvesting for photovoltaic systems, transfer speed scheduling 
algorithms have been developed. 

The common approach to optimal packet scheduling is 
using a water-filling algorithm [3], [4], where the  time  is  
divided into slots and given a level of energy to be used in that 
slot. For better power optimization, this approach is modified 
into backward water-filling, directional water-filling and 
generalized iterative water-filling [5] for offline (deterministic) 
scenarios. Real world applications are stochastic, so in order to 
simulate online scenarios, Gaussian noise is added. The 
algorithms that can be used in this case are constant water level 
policy, energy adaptive water-filling [6] and time-energy 
adaptive water-filling [7]. Because these are complex 
algorithms, simpler ones have been attempted, such as fuzzy 
power management [8], where a table with predetermined 
levels is used as the main policy. This means that the above 
algorithms will work best in high power scenarios, where 
leakage currents of the sensor node electronics are small 
enough to be considered non-existent. Furthermore, the results 
of all the algorithms were obtained using simulated data with 
programs such as GreenCastalia [9]. These algorithms do not 
take into account parameters such as circuit leakage or shifts in 
power consumption due to temperature variation, which are 
important to a real-life deployment scenario for a sensor 
network and can cause significant discrepancies between the 
theoretical model and the actual implementation. 

All the above algorithms need to measure how much 
energy the node is using when performing different tasks.  As 
previously mentioned, this is not feasible in real conditions 
because precise current measurement can only be performed at 
a high sampling rate, which in turn consumes a large amount of 
energy.  

Considering the presented problems, we developed a 
lightweight and efficient prediction algorithm that relies only 
on the voltage of the storage capacitor as a metric for energy 
production. 

III. SYSTEM ARCHITECTURE 
The majority of sensor nodes that are available as research 

or commercial platforms are built around 8-bit processor cores 
[10][11]. Few attempts have been made using the newer ARM 
Cortex-M3 32-bit architecture, the benefits of which are 
presented in this study [12], where a 4.6 throughput can be 
obtained compared to an 8-bit CPU over the same wireless 
network. Unfortunately, the downside is higher power 
consumption that can create difficulties for certain power 
supplies and energy sources. Even though the same average 
power consumption can be obtained for nodes using this ARM 
architecture, due to higher power consumption peaks the 
voltage of the power supply can drop to a level that is lower 
than the minimum voltage required for the node to function. 

We propose a new approach in designing a wireless sensor 
node by using a state-of-the-art microcontroller, the ARM 

Cortex-M0+ 32-bit Atmel SAMR21. We will present its 
advantages compared to our previous sensor node platform,  
the Sparrow V4 [11], which is based on an 8-bit MCU, the 
Atmega128RFA1. 

TABLE I.  COMPARISON BETWEEN ATMEGA128RFA1 AND ATSAMR21 

Criteria Atmega128RFA1 ATSAMR21 
Speed 16MHz 48MHz 
CPU Architecture AVR 8-bit Cortex M0+ 32-bit 
CPU Power 4.1mA 6.5mA 
Flash 128kB 256kB 
RAM 16kB 32kB 
Flash Endurance 50000 150000 
Rx Consumption 12.5mA 11.8mA 
Tx Consumption 14.5mA@3.5mA 13.8mA@4dBm 
Receiver Sensitivity -100dBm -101dBm 
Tx Max Power 3.5dBm 4dBm 
Package QFN64 QFN48 or QFN32 

TABLE II.  SPEED COMPARISON 

Criteria Atmega128RFA1 ATSAMR21 Total 
Advantage 

Advantage 
per MHz 

Integer 
Iterations 

44890 403950 8.99 2.99 

Branch 
Iterations 

27782 93552 3.36 1.12 

While(1) 
Iterations 

191536 6693086 34.94 11.64 

A. Performance 
We present in Table 1 and 2 the main differences between 

the two MCUs, SAMR21 and ATmega128RFA1 [13]. 

Being a 32-bit architecture, even though SAMR21 requires 
5.5mA compared to 4.1mA of the Atmega128RFA1, for simple 
32-bit integer addition, the SAMR21 consumes only 49nJ per 
iteration while the 8-bit microcontroller consumes 274nJ, 
which is almost five times more. Considering performance 
figures, the SAMR21 was 9 times faster with 403950 iterations 
per second while Atmega128RFA1 managed only 44890 
iterations. 

Testing the performance of the branch predictor, revealed 
that the M0+ is only 12% better than the older 8-bit counterpart 
when running at the same speed, but due to the frequency 
difference, it ends up being 3.36 times faster. 

The SAMR21 microcontroller is very similar to SAMD21 
[14], which is used in the Arduino Zero boards. This allowed 
us to use an existing code-base for the development of the 
project. Even though the Arduino software is well designed, it 
was not designed with low power consumption in mind. We 
will describe some of the problems encountered in the current 
software stack. 

TABLE III.  ENERGY EFFICIENCY COMPARISON 

Criteria Atmega128RFA1 ATSAMR21 
Integer Iteration 274nJ 49nJ 
Branch Iteration 442nJ 208nJ 
While(1) Iteration 64nJ 2.9nJ 

The first problem we noticed was that the Arduino Zero 
board had no sleep functionality implemented. The ideal idle 



current consumption should have been less than 5µA, but the 
actual current consumption of the board was around 350µA. 
Further tests revealed that the USB device was always 
initialized, which accounted for the extra 200µA. Almost all of 
the remaining 145µA came from default initializations of the 
pins as input pins and the clock generators which were never 
disabled at start-up. 

 

Fig. 1. The Sparrow R Wireless Sensor Node 

We managed to a decrease the idle current consumption for 
the platform from 350µA to about 30µA @ 3.2V, but it is still 
far from ideal. Surprisingly, lowering the voltage from 3.2V to 
1.8V leads to a decrease in sleep current consumption down to 
3.3µA. When examining the power trace using a digital 
oscilloscope, we found that a very low frequency clock remains 
active, which at 3.2V has high spikes in power consumption. 

After optimizing idle current consumption, we focused on 
the consumption in active mode. Even though it was specified 
in the official datasheet that this would be around 70µA/MHz 
@ 3.2V, or around 3.5mA@48MHz, we measured that the 
microcontroller actually drew 8mA@48MHz. However, we 
managed to reduce this figure to 5.5mA@48MHz, by 
implementing the clock optimizations presented below. 

The first modification was to change the clock of the 
peripheral interfaces, instead of 48 MHz, we run them at 12 
MHz. Also if peripherals are not used, we completely disable 
them. Due to this, we ran into problems related to SERCOM 
implementation, a generic module that handles USART, SPI 
and I2C. It was working on Arduino Zero, because the CPU 
and the BUS were configured to run at the same speed, but 
because of previous clock source modifications, the SERCOM 
did not set the correct speed. Also, there are 6 SERCOMs, and 
instead of enabling the clock for each one only when it is used, 
all of them were enabled, which lead to extra power 
consumption during run time. 

B. Hardware 
Because not all sensors are designed to run at 1.8V up 

to 3.2V, we need to be able to dynamically change the 
operating voltage of the node. We used the TPS62742, a 

step-down switching DC/DC converter with up to 90% 
efficiency, voltage selectable output from 1.8V to 3.2V in 
200mV steps, 360nA quiescent current and a special MCU 
controllable load output, with push-pull transistors. In inactive 
state the load line is pulled to GND and when active is pulled 
to VCC. When active, it consumes 12µA, but compared to the 
controlled sensors, this should not be noticeable. Because 
this allows to completely power down the sensors, the 
”stand-by” current consumption is 0µA and it also eliminates 
the previous design problem of a floating GND which 
allowed the sensors to be powered parasitically from the data 
pins even when disabled. 

The node can be connected to an extension daughter 
board which fully respects the Arduino pinout.  The advantage 
of this approach is that it allows to easily test and prototype 
new configurations in order to prepare the project in the 
shortest time possible. Also existing hardware designed for 
Arduino can work with this board, which increases the 
number of compatible hardware. In total, 20 I/O pins are 
available, pins that can be used for connecting sensors, either 
on the daughter board, or directly on a specially designed 
board. 

A jumper can select whether the Node is powered from 
USB or from other 2.1V+ voltage supplies. Through the same 
jumper a power measuring device can be used to monitor the 
total power consumption. In case the DC/DC converter is not 
needed the node can use other power sources. 

C. Software 
We implemented new modules designed for low power 

such as sleep and power management, which can dynamically 
scale the running voltage of the node between 1.8V to 3.2V 
and enable or disable the voltage supply to the sensors. This 
allows the user to select which voltage is better required for a 
certain application. For example, some sensors must be 
powered at exactly 2.8V while others at 2.5V or lower. The 
application can dynamically switch between a low-voltage 
state, in which the processor is kept most of the time in order to 
conserve power to a higher voltage, which is required for 
switching on and communicating with the sensors. 

The radio transceiver is very similar to an AT86RF233, but 
it is completely integrated into the microcontroller die. The 
module for RF was written and integrated in the core of the 
platform and was based on an Arduino library [15].  

For timekeeping when sleeping, a Real-Time Clock (RTC) 
functionality was implemented. Besides keeping the time, the 
RTC provides alarm interrupts for a pre-configured date, which 
can be set to be triggered every minute, every hour, every day, 
every month, every year, or only once. Together with another 
peripheral named EventSys, periodic interrupts are provided 
and the interrupt interval can range from once every second up 
to 128 times per second, with increments of power base 2. 

Also, in order to provide a minimum level of fault tolerance 
and resilience, a watchdog functionality was also implemented, 
in order to avoid code lock-up or hardware failure due to 
extreme environment conditions. 



The node has native USB which allows for code upload and 
also serial communication interface over a Composite Device 
Class (CDC). Due to the fact that no extra components are 
needed, the same node can be easily configured to act as a 
gateway or as a leaf. 

D. Algorithm 
As seen in the previous section, state-of-the-art algorithms 

require measurement of the consumed energy in order to 
dynamically schedule transmission tasks. This is not, however, 
applicable in a real-world scenario, where numerous variables 
can generate errors in the estimated energy left in the storage 
element: 

• Variations in temperature can alter the total stored 
energy 

• Leakage currents can vary due to different subsystems 
of the node being turned on or off during normal 
operation 

• Variations in parameters between supposed identical 
super-capacitors. 

In order to simplify the algorithms for the user to deploy 
them faster in real EHWSN applications, we have implemented 
and tested a simple dynamic scheduling algorithm for the 
transferred data. 

The algorithm can be considered to implement a basic 
water-filling policy, with one slot that is the current discharge 
period. This simplifies the implementation and reduces the 
computational requirements. It is designed to be run with an 
energy harvesting module that has a super capacitor as energy 
storage unit. Because of this, we simplified the predictor in 
order to obtain O(1) complexity. 

LISTING 1.    TRANSFER SPEED SCHEDULING ALGORITHM 

1:  procedure ALGORITHM(voltage, time)  
2:    determine current state Charging/Discharging  
3:    if changed from Charging to Discharging then  
4:      Calculate new target time 
5:      Calculate frequency based on total number of sent data 
6:      changedVoltage ← voltage 
7:    end if 
8:    if current state is Discharging then 
9:      if  voltage<M IN COM P U T E DELT A then 
10:      sendFreq←sendFreq/2 
11:    end if 
12:    deltaVoltage ← changedVoltage − voltage 
13:    if deltaVoltage>M IN  VOLTAGE DELTA then 
14:      Estimate the new remaining time 
15:      Calculate remaining time until deadline 
16:      newSendF req ←sendF req∗estimated ∗ 
percentagePenalty/remaining 
17:      if newSendF req! = sendF req then 
18:        Change the speed 
19:        changedV oltage ← voltage 
20:      end if 
21:    end if 

22:  end if 
23: end procedure 

The supercapacitor does not exhibit a linear discharge 
curve, but during the tests we have conducted, the error is small 
enough to allow us to estimate the remaining time without the 
requirement of measuring how much energy was stored in the 
capacitor and how much energy was consumed. Fig. 3 is an 
example of how the supercapacitor will discharge. 

 

Fig. 2. 1F Electrolytic Double Layer capacitor discharge curve 

The algorithm has a total time that it needs to respect, 
while trying to maximize the total number of packets sent. In 
order to achieve these two simple requirements, it dynamically 
estimates the remaining time and, according to the difference 
between the estimation and the remaining time, it keeps the 
same transmission frequency or alters it accordingly. The 
algorithm is very versatile, with many customization options, 
depending on the type of hardware and requirements of the 
application in which it is used. 

The different parameters that can be modified are presented 
in the list below: 

• DEFAULT TARGET TIME - the default deadline for 
the algorithm, dynamically adjusted after one iteration. 

• TIME PERCENTAGE PENALTY - alters the 
estimated time by either reducing it or increasing it. 

• TIME EXTRA REMAINING - when computing the 
new frequency, this is added to the remaining time in 
order to allow for a  longer running period. 

• SPEED DECREASE PENALTY - when the 
transmission speed is decreased, a penalty must be 
applied. 

• MIN SEND FREQ - minimum  packets per hour  for  
the algorithm. Minimum value that can be set is one 
per hour. 

• MAX SEND FREQ - maximum packets per hour for 
the algorithm. Maximum value that can be set is 3600 
per hour. 

• DEFAULT SEND FREQ - the default packets per hour 
before the algorithm stabilizes. 



• MIN VOLTAGE COMPUTE - the minimum voltage 
under which the algorithm will stop adjusting the 
frequency 

• MIN VOLTAGE - the minimum voltage considered  
by the algorithm when computing the estimated 
time and the new send frequency. 

• MIN VOLTAGE DELTA -  the delta voltage over 
which the algorithm will start to compute the estimated 
time and the new send frequency. 

The algorithm will recalculate the new deadline every time, 
so in the case of diurnal variations in sun-rise and sun-set, the 
target time will be automatically adjusted. In order to 
compensate for the situation in which the sun will rise later, the 
algorithm always tries to keep the node alive for a longer time 
than the given deadline. The extra time the node can be kept 
alive can vary according to the deadline, from 10 minutes for a 
4 hours deadline, to 1 hour for a 12 hour deadline. 

IV. RESULTS 
Our goal was to deliver a solution that could be deployed in 

an application as fast as possible, so instead of running 
software simulations, we decided to implement and test the 
algorithm on the new node Sparrow R. The algorithm is 
implemented in C, and compiled with gcc-arm-none-eabi-
4.8.3-2014q1 on Arduino  1.6.4. 

We selected two super-capacitors of 1F/5V rating, one built 
on Electrolytic Double Layer (EDLC) technology and other 
using Aerogel technology. We fully charged the capacitor and 
then let the algorithm decide how fast the data should be 
transmitted in order to reach the time deadline.  

The only input needed is the current voltage of the 
capacitor, read using a voltage divider that is controlled by an 
N-MOS transistor in order to reduce the power dissipated by 
the divider. The node will run a task that simulates sensor 
readings and other processing through a delay of 100 ms. The 
network is configured as single-hop, and the data sent through 
the radio transceiver has a length of 45 bytes. 

When beginning with a deadline of 4 hours, in the first run, 
the node manages to execute 1593 transmission tasks and to 
remain functional for a total time of 4 hours and 18 minutes. 
The second run, with a new deadline of 4 hours and 11 
minutes, the node ran 1631 transmission tasks for a total time 
of 4 hours and 35 minutes. The results of the test are presented 
in Fig. 3, were we can see that both runs have similar 
frequency and discharge voltage curves. 

With a longer, more realistic deadline of 8 hours, the node 
managed to transmit 785 times for a total of 8 hours and 14 
minutes.  

 

Fig. 3. Two runs of the algorithm with EDLC capacitor and 4 hours 
deadline 

We can easily calculate the average power consumption of 
the node for the 4 hour and 8 hour deadline scenarios. In both 
scenarios, the supercapacitor that was powering the node 
discharged from an initial voltage of 3.3V to 2.1V, the voltage 
at which the node becomes powered-down. Therefore, the 
energy available to the node is the same, and is calculated in  
(1). Average power is deduced from this in equations (2) and 
(3). 

 E = Ei – Ef = CVi
2/2 – CVf

2/2 = 3.64J (1) 

 P4h = E / T4h = 235µW (2) 

 P8h = E / T8h = 122µW (3) 

When the total running time is doubled, the average power 
consumption is halved, proving that the algorithm is working. 
Unfortunately, the total number of send data is twice as small, 
which indicates that the combined power used by the node 
when sleeping and the leakage of the capacitor is starting to 
influence the total number of sent data. This is best shown by 
the difference between the energy used to send 1 frame in the 4 
hours situation compared to 8 hours. 

We ran into problems when a longer deadline of 12 hours 
was tested, mainly because the self-discharge of the capacitor 
combined with the idle current consumption of the node is high 
enough to waste more than 75% of the energy. This had a 
significant impact on the total number of executed tasks. The 
first run of the test send data 143 times and lasted for 13 hours 
and 10 minutes. The second run started with a more realistic 
speed of 10 task per hours instead of 600, but the total number 
of sent data dropped to 18 with a total duration of 13 hours and 
15 minutes. 



 

Fig. 4. 1F Aerogel versus EDLC capacitor discharge tests 

The 12 hours test revealed that a 1F capacitor is not 
adequate and that a larger capacitor might be needed. Due to 
the fact that we tested the node with two types of capacitors, 
we wanted to determine if there was a difference between 
them. The result of the experiment is given in Fig. 4, which 
shows that the Aerogel capacitor had a lower voltage of 
1950mV compared to the ELDC of 2050mV. However, the 
EDLC capacitor managed to transmit more data than the 
Aerogel, even when the algorithm was tweaked to take into 
consideration the lower working voltage of the Aerogel 
capacitor. The EDLC managed to send data 1642 times, while 
the Aerogel capacitor managed only 1254 data transfers. 

V. CONCLUSIONS 
The main goal of this article was to present the complete 

architecture of an Energy Harvesting Wireless Sensor Network. 
We have presented a new wireless sensor node designed to be a 
new development platform that can be used to bring new 
energy harvesting applications to life. One of those applications 
is using the nodes for indoor monitoring, where photovoltaic 
harvesting is less efficient and the system is dynamically 
varying the transmission speed in order to keep alive a node 
until the energy source (super-capacitor) can be recharged. We 
implemented an efficient duty-cycling algorithm for scheduling 
data transmission in an energy-efficient manner, which we 
deployed and tested on the node. The algorithm proved to be 
able to keep the node alive and efficiently use all stored 
harvested energy. 

Because the algorithm only needs to read the voltage of the 
capacitor, the hardware requirements are very small and it can 
be easily deployed on existing hardware with little to no 
modification. 
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