CoAP Protocol

M2M vs. loT

||||||||||||||

IIIIIIIIIIIIII

IIIIIIIIIIIIII

||||||||||||||

M2M

loT

Simple device-to-device communication
usually within an embedded software at client
site

Grand-scale projects and want-it-all approach

Isolated systems of devices using same
standards

Integrates devices, data and applications
across varying standards

Limited scalability options

Inherently more scalable

Wired or cellular network used for connectivity

Usually devices require active Internet
connection

Extensive background of historical
applications

State-of-the-art approach with roots in M2M

CoAP
Features

Observe at new events happened on
sensors or actuators.

Device management and discoverability
from external devices.

Web protocol used in M2M with
constrained requirements

Asynchronous message exchange

Low overhead and very simple to parse
URI and content-type support

Proxy and caching capabilities

When to use CoAP?

» Your hardware cannot run HTTP or TLS
* Running CoAP and DTLS can practically do the same as HTTP. If one is an expert
on HTTP APls, then the migration will be simple. You receive GET for reading and
POST, PUT and DELETE for mutations and the security runs on DTLS.
* Your hardware uses battery
* Running CoAP will improve the battery performance when compared with HTTP
over TCP/IP. UDP saves some bandwidth and makes the protocol more efficient.
» A subscription is necessary
 If one cannot run MQTT and HTTP polling is impossible then CoAP is a solution

CoAP:TheWeb of Things Protocol

« Open IETF Standard N ek g
» Compact 4-byte Header
« UDP, SMS, (TCP) Support
» Strong DTLS Security

« Asynchronous
Subscription

£ js]
/C'IiLe—nt

 Built-in Discovery

CoAP

DTLS SMS

UDP

The Internet Constrained Environments

E T F

FromWeb Applications to loT Nodes
1000s of bytes

Web Object

100s bytes

Binary Web Object
CoAP

DTLS /UDP

|

loT Backhaul

TLS /TCP

Web Application

Router

10s of bytes

Binary Web Object
CoAP

DTLS /UDP

6LoWPAN
loT Node Network

The Web
and REST

Web Architecture

Client Client Client

L1 L1 L[]

SO

Server Server Server

Web Naming

Domain URI Query String

l—l—\

http://www.michaelcropper.co.uk/seo-tools/uri-encoder-decoder-tool-for-seo?name=value&another-name=value

Domain: The physical server where your website is hosted
URI: The identifier which maps to files on your server
Query String: Part of a GET request to easily passin values to customise the output

* Note: URI stands for Uniform Resource Identifier

userI info host pcl>rt
\

https:// john.doe @vww.exémple.com 2 Jforum/questions/ ?tag=networking&order=newe#top

| [[[[
scheme authority path query fragment

11

URL Resolution

Resource

HITR

TCP

IP

Ethernet Link

www.example.Q -

2001 :dead:beef::1

/sensors

?id=light

HTTP Request

(lient

N ——————
28 MS frrrrrrrrrrrrnnriniiiiiiiiri s
Ak] v o
GET /html
84 MS Perreerrennnennninniiiiiiiiieiiiniiisisns s s nnanes 3
124 MS frererrererenensnmnniiiirirr e
<—_—

;

—_—

sw96 -dlIH

J

-dJl

s 95

Web Paradigms

REST Resource

WSDL/
WADL

(application/xml
<?xml?>
<temp unit="C">50
</temp>

GET /sensor/temp

SOAP Service
<A

WSDL

[application/soap+xml

(Header)

Body

()

POST /semsorservice

RequestSensor(temp)

FIl'Tr-

mysensor.example.com

A REST Request

225 C

1

/temperature

Server

200 OK
GET /temperature application/text
225 C

Client

[

COAP:
Constrained
Application
Protocol

CoAP Design Requirements

REQ13: REQ14:
MIME Type Manageability

Webxgsi?r{ces

CoAP

uUDP

N

Constrained Lin

REQ10:
UDP Transport

REQ7:

HTTP Mapping SRECLE:

Caching

REQ2:
Constrained networks

REQS5:
Resource manipulation

REQS:
Resource discovery

REQS3:
Sleeping nodes

REQ1:
Limited Flash/RAM

REQ9:
REQS6: REQ11: REQ12: Multicast

Sub/Notify Reliability Low latency

The CoAP Architecture

- REST -

=
i
1

Server

I =
W m

m 1
Server

The Internet Constrained Environments

What CoAP is (and is not)

CoAP is

« Avery efficient RESTful protocol

* Ideal for constrained devices and networks
« Specialized for M2M applications

« Easy to proxy to/from HTTP

CoAP is not
* A general replacement for HTTP
« HTTP compression

 Restricted to isolated “automation” networks

CoAP Features

Embedded web transfer protocol (coap://)
Asynchronous transaction model

UDP binding with reliability and multicast support
GET, POST, PUT, DELETE methods

URI support

Small, simple 4 byte header

DTLS based PSK, RPK and Certificate security
Subset of MIME types and HTTP response codes
Built-in discovery

Optional observation and block transfer

Transaction Model

Application

Transport

. CoAP Request/Response
CoAP currently defines:

CoAP Messages

UDP binding with DTLS security

CoAP over SMS or TCP possible UDP
Base Messaging

Simple message exchange between endpoints

Confirmable or Non-Confirmable Message answered by Acknowledgement or Reset
Message

REST Semantics

REST Request/Response piggybacked on CoAP Messages
Method, Response Code and Options (URI, content-type etc.)

Message Header (4 bytes)

31

Ver [T TKL Code Message ID

Tohen

Options (if exists..)

Payload (if exists..)

Ver: It is a 2 bit unsigned integer indicating the version

T: it is a 2 bit unsigned integer indicating the message type: 0 confirmable, 1 non-
confirmable

TKL: Token Length is the token 4 bit length

Code: It is the code response (8 bit length)

Message ID: It is the message ID expressed with 16 bit

Request Example

CoAP CoAP
Client Server

CON [07)(af5] GET /light

> Confirmable Request

ACK [0Oxaf5] 2.05 Content "<light>..." ,
- Piggy-backed Response

In the above diagram, you can see communication but If the server has
troubles managing the incoming request it can send back a Rest message
(RST) instead of the Acknowledge message (ACK).

Dealing with Packet Loss

CoAP
Client

J

timeout

CON [Ox1a] GET /humidity

CON [Ox1a] GET /humidity

X

CoAP
Server

-

ACK [Ox1a] 2.05 Content "<humidity>..."

Separate Response

CoAP]

Client Server

CoAP]

CON [Ox1b] GET /light Token: Ox31

>
ACK [Ox1b] T takes too much time
) ‘l’

CON [0x823] 2.05 Content /light Token: 0x31 "<light>..."
-

/light ready

ACK [0x823]
e

If the server can’t answer to the request, then server sends an Acknowledge with
an empty response. As soon as the response is available then the server sends a
new Confirmable message to the client containing the response. At this point the

client sends back an Acknowledge message.

Bits and bytes...

CLIENT SERVER
| |
I == CON" [0x7d34] GET Jftemp ————————===—= > |

|

i 3

"temp" (4 B)
e s e e T e e e e e e e e e T e e e At

CLIENT SERVER

| I
| < ACK [0x7d34] 2.05 Content =-======-=- |

0 i

t—t—d—t—t—F—t—t 2t —t—F—F—t—F—F—F—F—F—F—F—F—F—F—F—+—F—+—+
| 0 | 2.05=69 | MID=0x7d34 |
t—t—d—t—t—F—t—t—t—F—t—F—F—F—F—F—F—F—F—F—F—t—t—F—F—F—F—+—+
n22.3 €% (6 B)
t—t—t—t—d—t—t—t—t—t—t =ttt —t—t—t—F ===t =t —F—F—F = —F =t —F—F—+—+

Caching

CoAP includes a simple caching model
Cacheability determined by response code
An option number mask determines if it is a cache key
Freshness model
Max-Age option indicates cache lifetime
Validation model
Validity checked using the Etag Option
A proxy often supports caching
Usually on behalf of a constrained node,
a sleeping node,
or to reduce network load

Proxying and caching

| [E

©<

CoAP Server

-

CON GET /light

HTTP GET /light

o R
1L

HTTP Client

ACK max-age=30s 2.05 Content "<light>}.."

27

!

200 OK "<light>..."

C cache /light)

-

HTTP GET /light

(cache fresh)

200 OK "<light>..."

28

Observation

CoAP CoAP
Client Server
CON GET /light Observe)'p Token: Ox3f
B

/

ACK 2.05 Observe: 27 Token: Ox3f "<light>..."

-

|/

CON 2.05 Observe: 28 Token: Ox3f "<light=..."

/light changes

-

ACK Token: Ox3f

<

CON 2.05 Observe: 29 Token: Ox3f "<light>..."

/light changes

ACK Token: Ox3f

See draft-ietf-core-observe

29

Block transfer

CoAP
Client

CON GET /light

CoAP
Server

ACK block2(nr=0, m=1, sz=1024) 2.05 "</light>...

CON block2(nr=1, m=0, sz=1024) GET /light

ACK block2(nr=1, m=1, sz=1024) 2.05 "</light>...

\|

CON block2(nr=2, m=0, sz=1024) GET /light

ACK block2(nr=2, m=1, sz=1024) 2.05 "</light>...

CON block2(nr=3, m=0, sz=1024) GET /light

ACK block2(nr=3, m=0, sz=1024) 2.05 "</light>...

See draft-ietf-core-block

.

J/

Night (4096 B)

Getting Started with CoAP

There are many open source implementations available
mbed includes CoAP support
Java CoAP Library Californium
C CoAP Library Erbium
lIbCoAP C Library
ICOAP Java Library
OpenCoAP C Library
TinyOS and Contiki include CoAP support
CoAP is already part of many commercial products/systems
ARM Sensinode NanoService
RTX 4100 WiFi Module
Firefox has a CoAP plugin called Copper
Wireshark has CoAP dissector support
Implement CoAP yourself, it is not that hard!

CoAP vs. MQTT

Client

N

Client

¥/,

Client

MaTT

Broker

Client

Client

Ve

&

Client

Client

Server

CoAP
> | Server
/ A
WV
> | Client

MQTT Protocol

MQTT - Message Queuing Telemetry
Transport

* Machine-to-machine (M2M)/"Internet of Things" connectivity
protocol

* Invented by Dr. Andy Stanford-Clark of IBM and Arlen Nipper of
Arcom (now Eurotech) in 1999

 |SO standard (ISO/IEC PRF 20922)
e Public and royalty-free license

* Used by Amazon Web Services, IBM WebSphere MQ, Microsoft Azure
loT, Adafruit, Facebook Messenger etc.

MQTT Features

* Small code footprint

* |deal if processor or memory resources are limited

* |deal if bandwidth is low or network is unreliable

* Publish/subscribe message exchange pattern

* Works on top of TCP/IP

* (Quality of service levels: at most once, at least once, exactly once

* Client libraries for Android, Arduino, C, C++, C#, Java, JavaScript, .NET etc.

e Security: authentication using user name and password, encryption using
SSL/TLS

* Support for persistent messages stored on the broker

Applications

* Home automation (e.g. smart lightning, smart metering)
* Healthcare

 Mobile phone apps (e.g. messaging, monitoring)

* [ndustrial automation

* Automotive

* General loT applications

Publish/Subscribe

* Multiple clients connect to a broker and subscribe to topics that they are interested in

e Clients connect to the broker and publish messages to topics.

* Topics are treated as a hierarchy, using a slash (/) as a separator.

 Example: multiple sensor devices may publish temperature readings on the topic:
sensors/DEVICE_NAME/temperature/NODE_ID

* Clients can receive messages by creating subscriptions. A subscription may be to an

ex_|olicit topic, in which case only messages to that topic will be received, or it may include
wildcards.

e Two wildcards are available: + or #

* MQTT clients can register a custom ‘last will testament’ message to be sent by the broker
if they disconnect.

* This message can be used to signal to subscribers when a device disconnects

Publish/Subscribe

¢ P X9 Subscriber

. Topics/Subscriptions: S
Messages are
published to topics.
Clients can subscribe
to a topic or a set of
related topics

. Publish/Subscribe:
Clients can subscribe to
topics or publish to topics

Publish

Temp, 28 - Publish temp,

28

Publisher Ty W Subscriber

Subscriber

Request/Response

1) Client

- subscribe topic "function-xyz/response/<id>" //note: <id> is a client unique ID
2) Server

- subscribe topic "function-xyz/request/+" //note: "+" is a wildcard
3) Client

- publish topic "function-xyz/request/<id>" payload <input parameter>
4) Server
- receive notification "function-xyz/request/<id>" payload <input parameter>
- retrieve <id> from string
- process function-xyz(<input parameter>)
- publish topic "function-xyz/response/<id>" payload "<response>"
5) Client
- receive notification "function-xyz/response/<id>" payload "<response>"

QoS Levels

0 -> At most once (Best effort, No Ack)

1 -> At least once (Acked, retransmitted if ack not
received)

2 -> Exactly once [Request to send (Publish), Clear-to-
send (Pubrec), message (Pubrel), ack (Pubcomp)]

Retained Messages: Server keeps messages even after sending them to
all subscribers. New subscribers get the retained messages

MQTT Features

« Clean Sessions and Durable Connections

- At connection set up: Clean session flag -> all subscriptions are removed on
disconnect, otherwise subscriptions remain in effect after disconnection
- Subsequent messages with high QoS are stored for delivery after reconnection

« Wills

- At connection a client can inform that it has a will or a message that should be
published if unexpected disconnection

« Alarm if the client loses connection
- Periodic keep alive messages -> If a client is still alive

- Topic Trees - topics are organized as trees using the / character
 /# matches all sublevels

 /+ matches only one sublevel

