
CoAP Protocol

M2M vs. IoT

CoAP
Features

• Observe at new events happened on
sensors or actuators.

• Device management and discoverability
from external devices.

• Web protocol used in M2M with
constrained requirements

• Asynchronous message exchange
• Low overhead and very simple to parse
• URI and content-type support
• Proxy and caching capabilities

When to use CoAP?
• Your hardware cannot run HTTP or TLS

• Running CoAP and DTLS can practically do the same as HTTP. If one is an expert
on HTTP APIs, then the migration will be simple. You receive GET for reading and
POST, PUT and DELETE for mutations and the security runs on DTLS.

• Your hardware uses battery
• Running CoAP will improve the battery performance when compared with HTTP

over TCP/IP. UDP saves some bandwidth and makes the protocol more efficient.
• A subscription is necessary

• If one cannot run MQTT and HTTP polling is impossible then CoAP is a solution

CoAP:TheWeb of Things Protocol

• Open IETF Standard
• Compact 4-byte Header
• UDP, SMS, (TCP) Support
• Strong DTLS Security
• Asynchronous

Subscription
• Built-in Discovery

FromWebApplications to IoT Nodes

WebApplication

1000s of bytes

HTTP

TLS /TCP

IP

DTLS /UDP

Binary WebObject
CoAP

IP

100s bytes 10s of bytes

IoT Backhaul
IoT Node Network

Proxy Router

Web Object

DTLS /UDP

Binary WebObject
CoAP

6LoWPAN

The Web
and REST

WebArchitecture

Web Naming

URL Resolution

11

HTTP Request

WebParadigms

A RESTRequest

CoAP:
Constrained
Application

Protocol

CoAP DesignRequirements

The CoAP Architecture

What CoAP is (and isnot)
CoAP is
• A very efficient RESTful protocol
• Ideal for constrained devices and networks
• Specialized for M2M applications
• Easy to proxy to/from HTTP

CoAP is not

• A general replacement for HTTP

• HTTP compression

• Restricted to isolated “automation” networks

CoAP Features
• Embedded web transfer protocol (coap://)
• Asynchronous transaction model
• UDP binding with reliability and multicast support
• GET, POST, PUT, DELETE methods
• URI support
• Small, simple 4 byte header
• DTLS based PSK, RPK and Certificate security
• Subset of MIME types and HTTP response codes
• Built-in discovery
• Optional observation and block transfer

Transaction Model
Transport

CoAP currently defines:
UDP binding with DTLS security
CoAP over SMS or TCP possible

Base Messaging
Simple message exchange between endpoints
Confirmable or Non-Confirmable Message answered by Acknowledgement or Reset
Message

REST Semantics
REST Request/Response piggybacked on CoAP Messages
Method, Response Code and Options (URI, content-type etc.)

Message Header (4 bytes)

0 31

Ver: It is a 2 bit unsigned integer indicating the version
T: it is a 2 bit unsigned integer indicating the message type: 0 confirmable, 1 non-
confirmable
TKL: Token Length is the token 4 bit length
Code: It is the code response (8 bit length)
Message ID: It is the message ID expressed with 16 bit

Request Example

Confirmable Request

Piggy-backedResponse

In the above diagram, you can see communication but If the server has
troubles managing the incoming request it can send back a Rest message
(RST) instead of the Acknowledge message (ACK).

Dealing with Packet Loss

SeparateResponse

If the server can’t answer to the request, then server sends an Acknowledge with
an empty response. As soon as the response is available then the server sends a
new Confirmable message to the client containing the response. At this point the
client sends back an Acknowledge message.

Bits and bytes...

Caching

CoAP includes a simple caching model
Cacheability determined by response code
An option number mask determines if it is a cache key

Freshness model
Max-Age option indicates cache lifetime

Validation model
Validity checked using the Etag Option

A proxy often supports caching
Usually on behalf of a constrained node,
a sleeping node,
or to reduce network load

Proxying and caching

27

Observation

28

Seedraft-ietf-core-observe

Block transfer

Seedraft-ietf-core-block

29

Getting Started with CoAP

There are many open source implementations available
mbed includes CoAP support
Java CoAP Library Californium
C CoAP Library Erbium

libCoAP C Library
jCoAP Java Library

OpenCoAP C Library
TinyOS and Contiki include CoAP support

CoAP is already part of many commercial products/systems
ARM Sensinode NanoService
RTX 4100 WiFi Module

Firefox has a CoAP plugin called Copper
Wireshark has CoAP dissector support
Implement CoAP yourself, it is not that hard!

CoAP vs. MQTT

MQTT Protocol

MQTT - Message Queuing Telemetry
Transport
• Machine-to-machine (M2M)/"Internet of Things" connectivity

protocol
• Invented by Dr. Andy Stanford-Clark of IBM and Arlen Nipper of

Arcom (now Eurotech) in 1999
• ISO standard (ISO/IEC PRF 20922)
• Public and royalty-free license
• Used by Amazon Web Services, IBM WebSphere MQ, Microsoft Azure

IoT, Adafruit, Facebook Messenger etc.

MQTT Features

• Small code footprint
• Ideal if processor or memory resources are limited
• Ideal if bandwidth is low or network is unreliable
• Publish/subscribe message exchange pattern
• Works on top of TCP/IP
• Quality of service levels: at most once, at least once, exactly once
• Client libraries for Android, Arduino, C, C++, C#, Java, JavaScript, .NET etc.
• Security: authentication using user name and password, encryption using

SSL/TLS
• Support for persistent messages stored on the broker

Applications

• Home automation (e.g. smart lightning, smart metering)
• Healthcare
• Mobile phone apps (e.g. messaging, monitoring)
• Industrial automation
• Automotive
• General IoT applications

Publish/Subscribe

• Multiple clients connect to a broker and subscribe to topics that they are interested in
• Clients connect to the broker and publish messages to topics.
• Topics are treated as a hierarchy, using a slash (/) as a separator.
• Example: multiple sensor devices may publish temperature readings on the topic:

sensors/DEVICE_NAME/temperature/NODE_ID
• Clients can receive messages by creating subscriptions. A subscription may be to an

explicit topic, in which case only messages to that topic will be received, or it may include
wildcards.

• Two wildcards are available: + or #
• MQTT clients can register a custom ‘last will testament’ message to be sent by the broker

if they disconnect.
• This message can be used to signal to subscribers when a device disconnects

Publish/Subscribe

• Topics/Subscriptions:
Messages are
published to topics.
Clients can subscribe
to a topic or a set of
related topics

• Publish/Subscribe:
Clients can subscribe to
topics or publish to topics

Request/Response
.1) Client

- subscribe topic "function-xyz/response/<id>" //note: <id> is a client unique ID
2) Server

- subscribe topic "function-xyz/request/+" //note: "+" is a wildcard
3) Client

- publish topic "function-xyz/request/<id>" payload <input parameter>
4) Server

- receive notification "function-xyz/request/<id>" payload <input parameter>
- retrieve <id> from string
- process function-xyz(<input parameter>)
- publish topic "function-xyz/response/<id> " payload "<response>"

5) Client
- receive notification "function-xyz/response/<id>" payload "<response>"

QoS Levels

• 0 -> At most once (Best effort, No Ack)
• 1 -> At least once (Acked, retransmitted if ack not

received)
• 2 -> Exactly once [Request to send (Publish), Clear-to-

send (Pubrec), message (Pubrel), ack (Pubcomp)]

• Retained Messages: Server keeps messages even after sending them to
all subscribers. New subscribers get the retained messages

MQTT Features

• Clean Sessions and Durable Connections
• At connection set up: Clean session flag -> all subscriptions are removed on

disconnect, otherwise subscriptions remain in effect after disconnection
• Subsequent messages with high QoS are stored for delivery after reconnection

• Wills
• At connection a client can inform that it has a will or a message that should be

published if unexpected disconnection
• Alarm if the client loses connection

• Periodic keep alive messages -> If a client is still alive
• Topic Trees - topics are organized as trees using the / character

• /# matches all sublevels
• /+ matches only one sublevel

