
Communication Models
of IoT

Client-Server Model

CLIENT SERVER RESOURCES

• Client-server is a
communication model in
which the client sends
requests to the server and
the server responds to the
requests.

• When the server receives
a request, it decides how
to respond, fetches the
data, retrieves resource
representations, prepares
the response, and then
sends the response to the
client.

REQ

Resp.

Publish-Subscribe Model

PUBLISHER

SEND
MESSAGES
TO TOPICS

BROKER

TOPIC 1

TOPIC 2

CONSUMER 1

CONSUMER 2

CONSUMER 3

Push-Pull Model

PUBLISHER

SEND
MESSAGES
TO QUEUE

CONSUMER 1

CONSUMER 2

PUSH MSG. TO QUEUE PULL MSG. FROM QUEUE

Exclusive Pair Model

CLIENT SERVER

Request to setup connection

Response accepting request

Message from client to server

Message from server to client

Connection close request

Connection close response

IoT Communication API

REST Communication APIs
• REpresentational State Transfer
• REST API is a way for two computer systems to communicate over HTTP in a similar way

to web browsers and servers
• Client Server considerations

• Client does not care about how data is stored at the server
• Server does not care about the user interface at the client

• Stateless - the client request should contain all the information necessary to respond to
a request

• Cache-able
• Layered - requesting client need not know whether it’s communicating with the actual

server, a proxy, or any other intermediary
• Uniform interface
• Code on demand

https://www.sitepoint.com/developers-rest-api/

REST-Based APIs

REST-AWARE
HTTP CLIENT

HTTP PACKET
GET, PUT, POST,

DELETE

REST PAYLOAD
JSON, XML

HTTP SERVER
AUTHORIZATION

REST-FUL WEB
SERVICE

RESOURCES URI

RESTful Web Service Request

HTTP method CRUD Action

GET read returns requested
data

POST create creates a new record

PUT or PATCH update updates an existing
record

DELETE delete deletes an existing
record

1. An Endpoint URL https://mydomain/user/123?format=json

2. The HTTP method

3. HTTP headers

4. Body Data

Examples

• a GET request to /user/ returns a list of registered users on a system
• a POST request to /user/123 creates a user with the ID 123 using the body

data
• a PUT request to /user/123 updates user 123 with the body data
• a GET request to /user/123 returns the details of user 123
• a DELETE request to /user/123 deletes user 123

https://www.sitepoint.com/developers-rest-api/
https://www.sitepoint.com/developers-rest-api/
https://www.sitepoint.com/developers-rest-api/

RESTful Web Service Reply

• Response payload can be whatever is practical: data, HTML, an image, an
audio file, etc.

• Typically JSON-encoded, but XML, CSV, simple strings, or any other format
can be used

• An appropriate HTTP status code should also be set in the response header
• 200 OK is most often used for successful requests
• 201 Created may also be returned when a record is created
• Errors should return an appropriate code (400 Bad Request, 404 Not

Found, 401 Unauthorized)

https://developer.mozilla.org/docs/Web/HTTP/Status

WebSocket Based Communication

CLIENT SERVER

Request to set up websocket

Accept response

Data frame

Data frame

Data frame

Data frame

Request to close conection

Connection close accept

IoT Levels & Deployment Templates

Device: An IoT device
allows identification,
remote sensing,
actuating and remote
monitoring capabilities.

Resource: Resources are
software components on
the IoT device for
accessing, processing,
and storing sensor
information, or
controlling actuators
connected to the
device.Resources also
include the software
components that enable
network access for the
device.

Controller
Service:Controller
service is a native service
that runs on the device
and interacts with the
web services. Controller
service sends data from
the device to the web
service and receives
commands from the
application (via web
services) for controlling
the device.

IoT Levels & Deployment Templates

Database: Database can be either local or in
the cloud and stores the data generated by
the IoT device.

Web Service: Web services serve as a link
between the IoT device, application, database
and analysis components. Web service can be
either implemented using HTTP and REST
principles (REST service) or using WebSocket
protocol (WebSocket service).

Analysis Component: The Analysis
Component is responsible for analyzing the
IoT data and generate results in a form which
are easy for the user to understand.

Application: IoT applications provide an
interface that the users can use to control
and monitor various aspects of the IoT
system. Applications also allow users to view
the system status and view the processed
data.

IoT Level-1
• A level-1 IoT system has a single node/device

that performs sensing and/or actuation, stores
data, performs analysis and hosts the
application

• Level-1 IoT systems are suitable for modeling
low- cost and low-complexity solutions where
the data involved is not big and the analysis
requirements are not computationally
intensive.

IoT Level-2
• A level-2 IoT system has a single node that

performs sensing and/or actuation and local
analysis.

• Data is stored in the cloud and application is
usually cloud- based.

• Level-2 IoT systems are suitable for solutions
where the data involved is big, however, the
primary analysis requirement is not
computationally intensive and can be done
locally itself.

IoT Level-3

• A level-3 IoT system has a single node. Data is
stored and analyzed in the cloud and
application is cloud- based.

• Level-3 IoT systems are suitable for solutions
where the data involved is big and the
analysis requirements are computationally
intensive.

IoT Level-4
• A level-4 IoT system has multiple nodes

that perform local analysis. Data is
stored in the cloud and application is
cloud-based.

• Level-4 contains local and cloud- based
observer nodes which can subscribe to
and receive information collected in the
cloud from IoT devices.

• Level-4 IoT systems are suitable for
solutions where multiple nodes are
required, the data involved is big and
the analysis requirements are
computationally intensive.

IoT Level-5
• A level-5 IoT system has multiple end

nodes and one coordinator node.
• The end nodes that perform sensing

and/or actuation.
• Coordinator node collects data from

the end nodes and sends to the cloud.
• Data is stored and analyzed in the

cloud and application is cloud-based.
• Level-5 IoT systems are suitable for

solutions based on wireless sensor
networks, in which the data involved
is big and the analysis requirements
are computationally intensive.

IoT Level-6
• A level-6 IoT system has multiple

independent end nodes that perform
sensing and/or actuation and send data
to the cloud.

• Data is stored in the cloud and
application is cloud-based.

• The analytics component analyzes the
data and stores the results in the cloud
database.

• The results are visualized with the
cloud-based application.

• The centralized controller is aware of
the status of all the end nodes and
sends control commands to the nodes.

These slides contain materials from

• Internet of Things - A Hands-On Approach

Bahga & Madisetti, © 2015
Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

