R »_:
W

"} h ﬂdﬁﬂ)

04.0/7.2019

*

Objectives

* Learn the basic properties of Bluetooth Low Energy
protocol

* Integrate your app with a third-party module, in this case
the Nordic thingylib

* Develop a simple app that communicates with the Nordic
Thingy device

s fitbit

Recap last sessions

® In the previous two sessions you have:

. Created Activities

. Used Ul elements such as Buttons, TextViews and RecyclerViews

. Used permissions to enable for Bluetooth and Network communication
. Interacted with a public APl using Retrofit for HT TP operations

. Used Intents and BroadcastReceivers to communicate between Android
components

s fitbit

Bluetooth Low Energy - BLE

* Bluetooth LE or simply BLE

* Short-range radio waves, up to 100m

®* 2400 - 2.4835 GHz
* up to 2Mbits/s

s fitbit

s fitbit

®

Peripheral
(GATT Sever)

i Attributes E
: Services :

i
' g

Server - Client architecture

Central
(GATT Client)

: Connectto peripheral to
Read/Write
attributes

BLE profile

®* Service)
o Peripheral
®* Characteristic (
. Servi
© D@SCprtOr Heart ;‘élggwice

[

Characteristic
L Heart rate measurement)

i Characteristic

Body sensor location

s fitbit

BLE States

@ @
K\J

- fitbit

Nordic Thingy Board

* Prototyping platform

* Out-of-the box experience, easy-to-use

. firmware already installed
. 10S and Android apps for configuration and showing its sensors
values in real-time, using Bluetooth LE communication

* | ots of sensors

. temperature, pressure, air quality and color
. motion sensors

. Microphone & speaker

. RGB led & button

s fitbit

Demo

- fitbit

Asynchronous programming

Synchronous Asynchronous

Request1]—+ Request 1

[Response 1]

4—‘ Request 2

Response 1

[Response 2]

Imaqge source

s fitbit

http://blogs.quovantis.com/asynchronous-programming-async-and-await-in-c/

Asynchronous programming

* Explicitly handle the fact that the operations finished

* Trigger an operation and your code continues to run

. Needs a mechanism of being informed about operation's completion, most

common one is through callbacks

. If your app/program heavily relies on asynchronous actions we recommend using a reactive
orogramming library, such as rx (available for Java, Kotlin, Swift etc)

* What asynchronous actions have you encountered in the last
two sessions?

* The asynchronous model is different than the multi-threaded
model, but they are usually encountered together

s fitbit

http://reactivex.io/

Services in Android

* Main Android component, non-Ul, used for background work

* Code is executed on the application's main thread (Ul)

. Can be in a different process but in the Android world multi-process
communication inside an app is not encouraged (yet)
. IntentServices can run on a different thread and perform a task

* Can "live" even when the activity is destroyed

* Let's think of logic from the previous sessions that could be
put in a service

®* Do not use services for CPU intensive or blocking operations

because they run on the Ul thread.
i fitbit

Services in Android

* All Services inherit the SDK's Service class

* The system instantiates your services, not you!
. The component that starts it doesn't have an instance to that service

* All classes that extend Context inherit the startService method
. Call startService/stopService from your activities

* See code exemples and flows for services on the wiki

s fitbit

https://ocw.cs.pub.ro/courses/smd/laboratoare/03

Bound Services

* A mechanism to "connect" various components with services
. in this case an activity can obtain a reference to the service

* The lifecycle of such a service is influenced by the number of

components bound to it

. no component bound -> the service will die (calling also startService
makes it a StartedService and prevents that)

* Let's look at how the binding is done in the thingylib library
for the ThingyService

s fitbit

Android BLE Communication - Prerequisites

1. Add permissions for Bluetooth and for Location
a. See in the first session why and how

2. Explicitly check the Location at runtime, otherwise you
cannot receive any results from scanning

3. Check that Bluetooth and the BLE feature is supported and
that Bluetooth is enabled

a. See the code in the first session solution

s fitbit

https://ocw.cs.pub.ro/courses/fss/sessions/session1-android#bluetooth
https://github.com/Fitbit/FitbitSummerSchool2019/blob/master/mobile/FirstSession/app/src/main/java/com/fitbit/firstsession/bluetooth/BluetoothController.java

Android BLE Communication - Scanning

* Asynchronous model: start a scan and receive the results

later

. In the case of classic bluetooth, the scan stops after 1 minute, in case of
BLE you need to explicitly stop it

* Use the APl methods for starting a scan (example)

. Provide a callback to receive the results. It must implement the interface
ScanCallback
. Optionally include filters

* Will receive the results for each device in range that is
advertising

s fitbit

https://ocw.cs.pub.ro/courses/fss/sessions/session1-android#bluetooth

Android BLE - BluetoothGatt profile

* The API for the Gatt Profile allowing your phone to transfer

data to/from the peripheral

. Discover services
. Read characteristics
. Read descriptors

* Constants for describing the connection state

s fitbit

Android BLE Communication - Connectivity

* Connect to the Gatt server of the peripheral received as scan

result using BluetoothDevice's connectGatt method
. It returns a BluetoothGatt object

* Implement a BluetoothGattCallback to receive updates from

the device for changes on the BluetoothGatt profile
. In the thingylib it is implemented in ThingyConnection

s fitbit

https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#connectGatt(android.content.Context,%20boolean,%20android.bluetooth.BluetoothGattCallback)
https://developer.android.com/reference/android/bluetooth/BluetoothGatt
https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html

This session's App

* Create a basic communication prototype for the
ThingyBoard

* Features and flows:

. Scan for Bluetooth Low Energy devices
. Display the scan results in a RecyclerView list with clickable rows

. Click on a scan result that represents your Thingy

. Start a new blank activity
. Connect to the Thingy and listen for changes on a sensor/element of your choice, e.g. that the

button was pressed
. Display a toast when you receive updates from Thingy

* Use the code skeleton for the Ul and scanning
. It is based on the app created during the first session

s fitbit

Let's g
e
t started
|

