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• Information Retrieval (IR) is the field that 
deals with retrieving relevant information 
from a large corpus of records given a user 
search query

• In traditional IR:

– The records are documents:

– The search query is a list of words (terms)

– The output contains the relevant documents for 
the search query
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• User Queries types:
– Keywords queries (search terms – most used): The user 

uses a list of terms (at list one) with the aim to retrieve 
documents that contain at least one or all of the search 
terms

• Soft IR systems – the documents returned contain at least one 
keyword (logical OR between the terms – added automatically)

• Hard IR systems – the documents returned contain all the 
keywords (logical AND between the terms – added automatically)

• In some IR systems the order of the keywords is also important –
returns documents where the list of words appear together

– Note:

• Bag of Words (BOW) approach is used when the order is not important

• N-gram approach is used when the order is important
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• User Queries types:

– Boolean queries (BOW approach): the user can 
use Boolean operators in their search queries 
(AND, OR, and NOT)

• Example 1: ‘data or web’  or ‘data and web’ – different 
results

• Example 2: ‘data or web and not  datamining’
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• User Queries types:

– Phrase queries (n-gram approach):

• Such a query consists of a sequence of words that make 
up a phrase

• The documents returned must contain at least one 
instance of this phrase

– Proximity queries 

• Is a relaxed version of the phase query and can be a 
combination of terms and phrases

• These queries seek the documents that contain the 
search term in close proximity of each other
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• User Queries types:

– Full document queries

• Users search for documents that are similar to 
the query document

–Natural language queries

• This  is the most complex case

• The user asks a question and the IR system 
returns an answer to the that question

• Used in question-answering systems
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• Query operation module

– Can range between very 

• Simple: just passes the query to the retrieval system

• Complex: does preprocessing

• Indexer module

– Used to index the original raw documents in some 
data structures 

– The data structures enables efficient retrieval

– Most common is the inverted index
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• Retrieval system module:

– Computes a relevance score (for the user query) 
for each retrieved documents

– According the relevance the documents are 
ranked and presented to the user

• Document collection module:

– A File System (FS), e.g. OSFS, HDFS, etc.

– A database (Relational or NoSQL).
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• The way in which terms and documents are 
represented governs the IR model

• There are three main document representations:

– Boolean model

– Vector Space model

– Statistical Language model
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• A document is represented using the bag of 
words (terms) model:

• Given a set (collection) of 𝑛 documents:
𝐷 = 𝑑1, 𝑑2,… , 𝑑𝑛 , 𝑛 = 𝐷

• All the distinct terms in the collection of 
documents can be modeled as a vocabulary: 

𝑉 = 𝑡1, 𝑡2, … , 𝑡𝑚 ,𝑚 = 𝑉
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• The entire corpus of documents can be represented as a 
matrix (document-term matrix) where the lines represent the 
document in 𝐷 and the columns represent the terms in 𝑉

• Each cell in the matrix is a weight (𝑤𝑖𝑗) associated for the 

number of occurrences of a term in the document. 

• A document 𝑑𝑖 ∈ 𝐷 is modeled as a vector 𝑑𝑖 =

𝑤𝑖1, 𝑤𝑖2, … ,𝑤𝑗𝑚 where each 𝑤𝑖𝑗 is the weight associated to 

the term 𝑡𝑗 ∈ 𝑉



Information Retrieval
Document Representations

15.01.2019 15

• The document-term matrix is:
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• Boolean model

– This is one of the simples models used to 
represent the weights in the document-term 
matrix

– This model only considers if a term is present or 
not in a document, 𝑤𝑖𝑗 ∈ 0, 1 :
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• Boolean model

– This model is used for Boolean queries 

– For example, given 3 terms 𝑥, 𝑦 𝑎𝑛𝑑 𝑧:

• 𝑥 𝐴𝑁𝐷 𝑦 𝐴𝑁𝐷 𝑁𝑂𝑇 𝑧 says that a document must 
contain both 𝑥 and 𝑦 but not he term 𝑧

• 𝑥 𝑂𝑅 𝑧 says that a document must contain at least one 
of the terms 𝑥 or 𝑧
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• Vector space model

– One of the best known and widely used IR models

– Each weight is computed as a variation of the number of 
occurrences of the term in the document or collection of 
documents

– Most widely used representation are:

• 𝑓𝑡,𝑑 the frequency of the term 𝑡 in the document 𝑑 is computed by 
counting

• 𝑇𝐹 𝑡, 𝑑 term frequency, the normalization of 𝑓𝑡,𝑑
• 𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑, 𝐷 term frequency – inverted document frequency

• 𝑂𝑘𝑎𝑝𝑖 𝐵𝑀25
– Okapi is the name of the information system proposed by Robertson, Spärck

Jones, et al.

– BM Best match
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• Weighting schemas

– 𝑇𝐹 𝑡, 𝑑 term frequency is a normalization of the 
𝑓𝑡,𝑑

– Logarithmic normalized 𝑇𝐹 𝑡, 𝑑 :
𝑇𝐹 𝑡, 𝑑 = 1 + log 𝑓𝑡,𝑑

– This has a bias towards longer documents because 
in longer documents terms that are irrelevant can 
appear multiple times and thus these terms have 
a higher 𝑇𝐹(𝑡, 𝑑)
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• Weighting schemas

– To removes the bias towards longer documents, 
the augmented 𝑇𝐹 𝑡, 𝑑

– For 𝐾 = 0.5 we obtained the double 
normalization form of the 𝑇𝐹 𝑡, 𝑑 :
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• Weighting schemas

– Another way to removes the bias towards longer 
documents is normalize the frequency of the term 
with the length of the document
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• Weighting schemas
– The 𝐼𝐷𝐹(𝑡,𝐷) is a measure of how much information a 

term provides:
• Weather a term is common or rare across all documents 

• 𝑛 is the number of documents in 𝐷

• 𝑛𝑡 is the number of documents where term 𝑡 appears:

– 𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑,𝐷 is used to determine the importance of a 
term for a document in a corpus of documents:

𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑, 𝐷 = 𝑇𝐹 𝑡, 𝑑 ⋅ 𝐼𝐷𝐹 𝑡, 𝐷
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• Weighting Schemas
– Okapi BM25 is another weighting schema used to 

compute the weights for the document-term matrix

𝑂𝑘𝑎𝑝𝑖𝐵𝑀25 𝑡, 𝑑, 𝐷 =
𝑇𝐹𝐼𝐷𝐹 𝑡,𝑑,𝐷 ⋅ 𝑘1+1

𝑇𝐹 𝑡,𝑑 +𝑘1⋅ 1−𝑏+𝑏⋅
𝑑

𝑎𝑣𝑔
𝑑′∈D

𝑑′

– The free parameters values are: 𝑘1 ∈ [1.2, 2.0] and 𝑏 =
0.75

– 𝑑 is the

– 𝑎𝑣𝑔𝑑′∈D 𝑑′ is the average document length
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• Ranking functions
– Given a search query 𝑄 = 𝑞1 , 𝑞2, … , 𝑞𝑘 where 𝑞𝑖 are

the query terms (𝑖 = 1, 𝑘, 𝑘 = |𝑄|),

– The objective is to retrieve the documents that contain
the terms in the search query 𝑄

– We need to give a score that measures the importance of
each document to the query

– Then order the list of documents using this score and
create a documents ranking
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• Ranking functions

– The score for a document 𝑑 ∈ 𝐷 is the sums of
the weights (𝑇𝐹𝐼𝐷𝐹, 𝑂𝑘𝑎𝑝𝑖𝐵𝑀25) computed for
each search term in query 𝑄

– Using one of these scores, the documents’ relevance to
the query is determined
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• Statistical Language Model
– Are based on probability and have foundations in statistical 

theory

– Given a set of 𝑛 documents  𝐷 = 𝑑1, 𝑑2,… , 𝑑𝑛 and a 
query 𝑄 = 𝑞1 , 𝑞2, … , 𝑞𝑘

– In the statistical language model, we consider a query 𝑄 as 
being “generated” by a probabilistic model based on a 
document 𝑑𝑖

– Using the Bayes rule, the rank of documents are estimated 
by the posterior probability 𝑝 𝑑𝑖|𝑞 :
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• Statistical Language Model
– For ranking, 𝑝 𝑄 is not needed, as is the same for all the documents

– The model assumes that each term is independently generated, 
which is essentially a multinomial distribution over words, and so:

– Where 𝑓𝑗𝑞 is the number of times the term 𝑡𝑗 appears in 𝑄

– So, the retrieve problem is reduced to estimating𝑝 𝑡𝑗|𝑑𝑖 :

𝑝 𝑡𝑗|𝑑𝑖 =
𝑓𝑖𝑗
𝑑𝑖

– Where 𝑓𝑖𝑗 is actually the frequency of word 𝑡𝑗 in document 𝑑𝑖, 𝑓𝑡𝑗,𝑑𝑖
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• Before the documents in a collection are used 
for retrieval some preprocessing steps are 
usually performed

• These steps may include:

– Expanding contractions

– Sentence tokenization

– Extracting terms

– Removing stop words and punctuation
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• Expanding contractions, i.e., shortened 
versions of the written and spoken forms of a 
word, syllable, or word group, created by 
omission of internal letters and sounds

• Sentence tokenization is the process by which 
the text of a document is split in sentences.

– This step can be skipped if the terms are not 
processed further
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• Extracting terms is the process by which each 
term is determined

– Sometimes it is useful to extract the stem or the 
lemma of a word (not useful for opinion mining 
and sentiment analysis)

– To extract the lemma sentence tokenization is 
used and also a part of speech tagger
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• Extracting term – stemming 

– In many languages, a word has various forms depending 
on the context, e.g. verbs have the gerund form (-ing
termination) or nouns can be singular or plural.

– This variations cause low retrieval because a relevant 
document can contain variation of a word but not the 
exact word

– By removing the suffixes and prefixes of a word we can 
obtain the stem of the word

– Stemming is the process of extracting the stems

– The stems sometimes are not accurate, e.g. the words 
“cops” and “cope” are both reduce to “cop”
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• Extracting term – lemmatization 

– A more accurate way of extracting the root word is 
by extracting the lemma, this process is called 
lemmatization

– Lemmatization uses the part of speech of a word, 
the process that extracts the part of speech is 
called Part of Speech Tagging (PoS)

– This is a very costly process but it increases the 
accuracy of the retrieval
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• Removing stop words and punctuation

– Stop words are frequently occurring and 
insignificant words in a language, e.g.: the, a, an, 
etc.

– These can be removes together with punctuation 
as they add no significate information to the 
process of information retrieval

– For some tasks are important, e.g. opinion mining 
and sentiment analysis.
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• The main purpose of IR is to retrieve documents 
given a search query

• One approach is to scan the collection of documents
and to return the documents that match the query 
terms.

– This method is actually impractical for a large collection of 
documents

• A second approach is to build a data structure 
(inverted index) that maps each word to the 
documents where it appears.
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• How to construct an inverted index

1. Given a collection of documents 𝐷 =
{𝑑1 , 𝑑2 , … , 𝑑𝑛}, 𝑛 = 𝐷

2. Attach to each documents an unique identifier 
𝑖𝑑1 , 𝑖𝑑2 , … , 𝑖𝑑𝑛 where 𝑖𝑑𝑖 is the unique 

identifier for document 𝑑𝑖
3. Construct the vocabulary

4. Attach to each word in the vocabulary the list of 
documents that contain the word
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• In practice, an inverted index is a dictionary 
with the key the word and the value a list of 
documents.

𝑡𝑖 = 𝑖𝑑𝑗| 𝑡𝑖 ∈ 𝑑𝑖
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• Sometimes, additional information can be 
stored in the inverted index, e.g.:

– The term frequency of the word in the document

– A list with positions, etc.

• Where:

– 𝑓𝑖𝑗 is the frequency of term 𝑡𝑖 in document 𝑑𝑖

– 𝑜𝑘 , 𝑘 = 1, 𝑑𝑖 is the position of term 𝑡𝑖 in 
document 𝑑𝑖



Inverted Index

15.01.2019 40

• E.g. 

𝑖𝑑1: I am learning about inverted indexes.

𝑖𝑑2: Inverted indexes are used in information retrieval.

𝑖𝑑3: Applications that retrieve documents use inverted indexes.

• The vocabulary is: 
{𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑, 𝑖𝑛𝑑𝑒𝑥𝑒𝑠, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙, 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠,
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}

• Notes: 
– the stop words were removed: I, am, about, are, used, in, that, use

– Stemming or lemmatization can be applied, in this case it wasn’t.
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• Simple Inverted Index
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• Complex Inverted Index:
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• Searching with inverted indexes:

– Given a search terms query each term is searched in the 
index and a concatenated list of all the document unique 
identifiers without duplicates is returned

– Example: 

• For the search query ‘applications information documents’ the 
following documents are going to be returned:{𝑖𝑑3, 𝑖𝑑2}

• If a ranking function is used then document 𝑑3 will have a bigger 
weight that document 𝑑2
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• The retrieval models used so far are based on 
keyword or term matching, i.e. terms in the search 
query are matched with terms in the documents

• However, many concepts or objects can be described 
in multiple ways (synonyms), e.g. image, picture, 
photo

• The retrieval process can have a low recall if the 
search query contains a synonym that is not frequent 
in the corpus of documents
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• Latent Semantic Indexing (LSI – also called Latent Semantic 
Analysis LSA) tries to solve the problem of synonyms by 
identifying terms that statistically appear together.

• It assumes that there are some underlying latent semantic 
structure in the data that is partially obscured by the 
randomness of word choice.

• It uses a statistical technique, called Singular Value 
Decomposition (SVD), to estimate this latent structure.

• It identifies syntactical different but semantically similar terms 
using a structure called hidden “concept” space
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• Given the term-document matrix (𝐴) with the 
size 𝑚× 𝑛 (𝑛 is number of documents, 𝑚 is 
the number of terms in the vocabulary)

• LSI uses SVD to factorize 𝐴 into a product of 
three matrices:

𝐴 = 𝑈Σ𝑉𝑇
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𝐴 = 𝑈Σ𝑉𝑇

• Where
– 𝑈

• Is a 𝑚× 𝑟 matrix and its columns, called left singular values, are eigenvectors 
associated with 𝑟 non-zero eigenvalues of 𝐴𝐴𝑇 . 

• The columns of 𝑈 are unit orthogonal vectors, i.e. 𝑈𝑇𝑈 = 𝐼

– 𝑉
• Is an 𝑛 × 𝑟 matrix and its columns, called right singular vectors, are eigenvectors 

associated with the 𝑟 non-zero eigenvalues of 𝐴𝑇𝐴. 

• The columns of 𝑉 are also unit orthogonal vectors, i.e., 𝑉𝑇𝑉 = 𝐼.

– Σ is a 𝑟 × 𝑟 diagonal matrix, Σ = 𝑑𝑖𝑎𝑔 𝜎1, 𝜎2,… , 𝜎𝑟 , 𝜎𝑖 > 0. The 
diagonal values 𝜎𝑖
• Are called singular values 

• Are non-negative square roots of r non-zero eigenvalues of 𝐴𝐴𝑇 . 

• They are arranged in decreasing order, i.e. 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑟 > 0
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• Notes: 

1. The initial 𝑈 is an 𝑚 ×𝑚 matrix, 𝑉 is an 𝑛 × 𝑛 matrix and Σ
is an 𝑚 × 𝑛 matrix.

2. Σ’s diagonal consists of non-negative eigenvalues of 𝐴𝐴𝑇 or 
𝐴𝑇𝐴. 
– However, due to zero eigenvalues, Σ has zero-valued rows and 

columns. 

– Matrix multiplication tells us that those zero-valued rows and 
columns from Σ can be dropped. 

– Then, the last 𝑚− 𝑟 columns in 𝑈 and the last 𝑛 − 𝑟 columns in 𝑉
can also be dropped.

3. 𝑟 is the rank of 𝐴, 𝑟 ≤ 𝑚𝑖𝑛 𝑚, 𝑛
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• An eigenvectors is a non-negative vector whose direction does 
not change when a linear transformation is applied to it:

𝑇 𝑣 = 𝜆𝑣

• Where 
– 𝑇(⋅) is a linear transformation

– 𝜆 is the eigenvalue

• For a matrix 𝐴, the eigenvectors and eigenvalue gives us the 
following property:

𝐴𝑣 = 𝜆𝑣 or 𝐴 − 𝜆𝐼 𝑣 = 0

• To compute the eigenvalues, we must solve the linear system 
det 𝐴 − 𝜆𝐼 = 0
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• Intuitive Idea of LSI: 

– The intuition of LSI is that SVD rotates the axes of 
𝑛-dimensional space of A such that 

• The first axis runs along the largest variation (variance) 
of terms among the documents

• The second axis runs along the second largest variation 
(variance) of term 

• And so on



Summary

15.01.2019 52

• This course presented:
– IR architecture

– IR query types

– Document representation

– Weighting schemas

– Text preprocessing

– Inverted Indexes

– LSI
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