

University Politehnica of Bucharest

Faculty of Automatic Control and Computers

Information Retrieval Systems

Ciprian-Octavian Truică ciprian.truica@cs.pub.ro

Overview

- Information Retrieval
- Text Preprocessing
- Inverted Index
- Latent Semantic Indexing

Overview

- Information Retrieval
- Text Preprocessing
- Inverted Index
- Latent Semantic Indexing

- Information Retrieval (IR) is the field that deals with retrieving relevant information from a large corpus of records given a user search query
- In traditional IR:
 - The records are documents:
 - The search query is a list of words (terms)
 - The output contains the relevant documents for the search query

Information Retrieval Architecture

- User Queries types:
 - Keywords queries (search terms most used): The user uses a list of terms (at list one) with the aim to retrieve documents that contain at least one or all of the search terms
 - Soft IR systems the documents returned contain at least one keyword (logical OR between the terms – added automatically)
 - Hard IR systems the documents returned contain all the keywords (logical AND between the terms – added automatically)
 - In some IR systems the order of the keywords is also important returns documents where the list of words appear together
 - Note:
 - Bag of Words (BOW) approach is used when the order is not important
 - N-gram approach is used when the order is important

- User Queries types:
 - Boolean queries (BOW approach): the user can use Boolean operators in their search queries (AND, OR, and NOT)
 - Example 1: 'data or web' or 'data and web' different results
 - Example 2: 'data or web and not datamining'

• User Queries types:

– Phrase queries (n-gram approach):

- Such a query consists of a sequence of words that make up a phrase
- The documents returned must contain at least one instance of this phrase
- Proximity queries
 - Is a relaxed version of the phase query and can be a combination of terms and phrases
 - These queries seek the documents that contain the search term in close proximity of each other

- User Queries types:
 - Full document queries
 - Users search for documents that are similar to the query document
 - Natural language queries
 - This is the most complex case
 - The user asks a question and the IR system returns an answer to the that question
 - Used in question-answering systems

- Query operation module
 - Can range between very
 - Simple: just passes the query to the retrieval system
 - Complex: does preprocessing
- Indexer module
 - Used to index the original raw documents in some data structures
 - The data structures enables efficient retrieval
 - Most common is the inverted index

- Retrieval system module:
 - Computes a relevance score (for the user query) for each retrieved documents
 - According the relevance the documents are ranked and presented to the user
- Document collection module:
 - A File System (FS), e.g. OSFS, HDFS, etc.
 - A database (Relational or NoSQL).

- The way in which terms and documents are represented governs the IR model
- There are three main document representations:
 - Boolean model
 - Vector Space model
 - Statistical Language model

- A document is represented using the bag of words (terms) model:
- Given a set (collection) of n documents: $D = \{d_1, d_2, \dots, d_n\}, n = |D|$
- All the distinct terms in the collection of documents can be modeled as a vocabulary:
 V = {t₁, t₂, ..., t_m}, m = |V|

- The entire corpus of documents can be represented as a matrix (document-term matrix) where the lines represent the document in *D* and the columns represent the terms in *V*
- Each cell in the matrix is a weight (w_{ij}) associated for the number of occurrences of a term in the document.
- A document $d_i \in D$ is modeled as a vector $d_i = \{w_{i1}, w_{i2}, \dots, w_{jm}\}$ where each w_{ij} is the weight associated to the term $t_j \in V$

• The document-term matrix is:

- Boolean model
 - This is one of the simples models used to represent the weights in the document-term matrix
 - This model only considers if a term is present or not in a document, $w_{ij} \in \{0, 1\}$:

$$w_{ij} = \begin{cases} 1 & if \ t_j \ appears \ in \ d_i \\ 0 & otherwise \end{cases}$$

- Boolean model
 - This model is used for Boolean queries
 - For example, given 3 terms x, y and z:
 - (*x* AND *y*) AND (NOT *z*) says that a document must contain both *x* and *y* but not he term *z*
 - x OR z says that a document must contain at least one of the terms x or z

- Vector space model
 - One of the best known and widely used IR models
 - Each weight is computed as a variation of the number of occurrences of the term in the document or collection of documents
 - Most widely used representation are:
 - $f_{t,d}$ the frequency of the term t in the document d is computed by counting
 - TF(t, d) term frequency, the normalization of $f_{t,d}$
 - TFIDF(t, d, D) term frequency inverted document frequency
 - Okapi BM25
 - Okapi is the name of the information system proposed by Robertson, Spärck Jones, et al.
 - BM Best match

- Weighting schemas
 - -TF(t,d) term frequency is a normalization of the $f_{t,d}$
 - Logarithmic normalized TF(t, d): $TF(t, d) = 1 + \log f_{t,d}$
 - This has a bias towards longer documents because in longer documents terms that are irrelevant can appear multiple times and thus these terms have a higher TF(t, d)

- Weighting schemas
 - To removes the bias towards longer documents, the augmented TF(t, d)

$$TF(t,d) = K + (1-K) \cdot \frac{f_{t,d}}{\max_{t' \in d} f_{t',d}}$$

- For K = 0.5 we obtained the double normalization form of the TF(t, d):

$$TF(t,d) = 0.5 + 0.5 \cdot \frac{f_{t,d}}{\max_{t' \in d} f_{t',d}}$$

- Weighting schemas
 - Another way to removes the bias towards longer documents is normalize the frequency of the term with the length of the document

$$TF(t,d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}$$

- Weighting schemas
 - The *IDF*(*t*, *D*) is a measure of how much information a term provides:
 - Weather a term is common or rare across all documents
 - *n* is the number of documents in *D*
 - n_t is the number of documents where term t appears:

$$IDF = 1 + \log \frac{n}{n_t}$$

- TFIDF(t, d, D) is used to determine the importance of a term for a document in a corpus of documents: $TFIDF(t, d, D) = TF(t, d) \cdot IDF(t, D)$

- Weighting Schemas
 - Okapi BM25 is another weighting schema used to compute the weights for the document-term matrix

$$DkapiBM25(t,d,D) = \frac{TFIDF(t,d,D) \cdot (k_1+1)}{TF(t,d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{avg_{d' \in D}(|d'|)}\right)}$$

- The free parameters values are: $k_1 \in [1.2, 2.0]$ and b = 0.75
- |d| is the
- $avg_{d'\in D}(|d'|)$ is the average document length

Information Retrieval Ranking Functions

- Ranking functions
 - Given a search query $Q = (q_1, q_2, ..., q_k)$ where q_i are the query terms ($i = \overline{1, k}, k = |Q|$),
 - The objective is to retrieve the documents that contain the terms in the search query Q
 - We need to give a score that measures the importance of each document to the query
 - Then order the list of documents using this score and create a documents ranking

Information Retrieval Ranking Functions

- Ranking functions
 - The score for a document $d \in D$ is the sums of the weights (*TFIDF*, *OkapiBM*25) computed for each search term in query Q

Þ

$$S_TFIDF(Q,d,D) = \sum_{\substack{i=1\\k}}^{n} TFIDF(q_i,d,D)$$
$$S_OkapiBM25(Q,d,D) = \sum_{\substack{i=1\\i=1}}^{n} OkapiBM25(q_i,d,D)$$

 Using one of these scores, the documents' relevance to the query is determined

- Statistical Language Model
 - Are based on probability and have foundations in statistical theory
 - Given a set of n documents $D = \{d_1, d_2, \dots, d_n\}$ and a query $Q = (q_1, q_2, \dots, q_k)$
 - In the statistical language model, we consider a query Q as being "generated" by a probabilistic model based on a document d_i
 - Using the Bayes rule, the rank of documents are estimated by the posterior probability $p(d_i|q)$:

$$p(d_i|Q) = \frac{p(Q|d_i) \cdot p(d_i)}{p(Q)}$$

- Statistical Language Model
 - For ranking, p(Q) is not needed, as is the same for all the documents
 - The model assumes that each term is independently generated, which is essentially a multinomial distribution over words, and so:

$$p(Q = (q_1, q_2, \dots, q_k) | d_i) = \prod_{j=1}^{k} p(q_j | d_i) = \prod_{j=1}^{m} p(t_i | d_j)^{f_{jq}}$$

- Where f_{jq} is the number of times the term t_j appears in Q
- So, the retrieve problem is reduced to estimating $p(t_j|d_i)$: $p(t_j|d_i) = \frac{f_{ij}}{|d_i|}$

– Where
$$f_{ij}$$
 is actually the frequency of word t_j in document d_i , f_{t_i,d_i}

Overview

- Information Retrieval
- Text Preprocessing
- Inverted Index
- Latent Semantic Indexing

- Before the documents in a collection are used for retrieval some preprocessing steps are usually performed
- These steps may include:
 - Expanding contractions
 - Sentence tokenization
 - Extracting terms
 - Removing stop words and punctuation

- Expanding contractions, i.e., shortened versions of the written and spoken forms of a word, syllable, or word group, created by omission of internal letters and sounds
- Sentence tokenization is the process by which the text of a document is split in sentences.
 - This step can be skipped if the terms are not processed further

- Extracting terms is the process by which each term is determined
 - Sometimes it is useful to extract the stem or the lemma of a word (not useful for opinion mining and sentiment analysis)
 - To extract the lemma sentence tokenization is used and also a part of speech tagger

- Extracting term stemming
 - In many languages, a word has various forms depending on the context, e.g. verbs have the gerund form (-ing termination) or nouns can be singular or plural.
 - This variations cause low retrieval because a relevant document can contain variation of a word but not the exact word
 - By removing the suffixes and prefixes of a word we can obtain the stem of the word
 - Stemming is the process of extracting the stems
 - The stems sometimes are not accurate, e.g. the words "cops" and "cope" are both reduce to "cop"

- Extracting term lemmatization
 - A more accurate way of extracting the root word is by extracting the lemma, this process is called lemmatization
 - Lemmatization uses the part of speech of a word, the process that extracts the part of speech is called Part of Speech Tagging (PoS)
 - This is a very costly process but it increases the accuracy of the retrieval

- Removing stop words and punctuation
 - Stop words are frequently occurring and insignificant words in a language, e.g.: the, a, an, etc.
 - These can be removes together with punctuation as they add no significate information to the process of information retrieval
 - For some tasks are important, e.g. opinion mining and sentiment analysis.

Overview

- Information Retrieval
- Text Preprocessing
- Inverted Index
- Latent Semantic Indexing

- The main purpose of IR is to retrieve documents given a search query
- One approach is to scan the collection of documents and to return the documents that match the query terms.
 - This method is actually impractical for a large collection of documents
- A second approach is to build a data structure (inverted index) that maps each word to the documents where it appears.

- How to construct an inverted index
 - 1. Given a collection of documents $D = \{d_1, d_2, ..., d_n\}, n = |D|$
 - 2. Attach to each documents an unique identifier $\{id_1, id_2, \dots, id_n\}$ where id_i is the unique identifier for document d_i
 - 3. Construct the vocabulary
 - 4. Attach to each word in the vocabulary the list of documents that contain the word

 In practice, an inverted index is a dictionary with the key the word and the value a list of documents.

$$t_i = \left\{ id_j \mid t_i \in d_i \right\}$$

- Sometimes, additional information can be stored in the inverted index, e.g.:
 - The term frequency of the word in the document
 - A list with positions, etc. $t_i = \left\{ < id_j, f_{ij}, \left[o_1, o_2, \dots, o_{|d_j|}\right] > |t_i \in d_i \right\}$
- Where:
 - $-f_{ij}$ is the frequency of term t_i in document d_i
 - $-o_k, k = \overline{1, |d_i|}$ is the position of term t_i in document d_i

Inverted Index

• E.g.

 id_1 : I am learning about inverted indexes.

 id_2 : Inverted indexes are used in information retrieval.

 id_3 : Applications that retrieve documents use inverted indexes.

- The vocabulary is: {learning, inverted, indexes, information, retrieval, applications, retrieve, documents}
- Notes:
 - the stop words were removed: I, am, about, are, used, in, that, use
 - Stemming or lemmatization can be applied, in this case it wasn't.

• Simple Inverted Index *learning*: [*id*₁], inverted: $[id_1, id_2, id_3]$, indexes: $[id_1, id_2, id_3]$, *information*: [*id*₁], *retrieval*: [*id*₂], applications: [id₃], retrieve: $[id_3]$, documents: $[id_3]$

 Complex Inverted Index: *learning*: $[< id_1, 1, [3] >]$, *inverted*: $[\langle id_1, 1, [5] \rangle, \langle id_2, 1, [1] \rangle, \langle id_3, 1, [6] \rangle],$ *indexes*: $[< id_1, 1, [5] >, < id_2, 1, [2] >, < id_3, 1, [6] >]$, information: $[< id_2, 1, [5] >]$, *retrieval*: $[< id_2, 1, [7] >]$, *applications*: $[< id_3, 1, [1] >]$, retrieve: $[< id_3, 1, [3]]$, *documents*: $[< id_3, 1, [4] >]$

- Searching with inverted indexes:
 - Given a search terms query each term is searched in the index and a concatenated list of all the document unique identifiers without duplicates is returned
 - Example:
 - For the search query 'applications information documents' the following documents are going to be returned: {id₃, id₂}
 - If a ranking function is used then document d_3 will have a bigger weight that document d_2

Overview

- Information Retrieval
- Text Preprocessing
- Inverted Index
- Latent Semantic Indexing

- The retrieval models used so far are based on keyword or term matching, i.e. terms in the search query are matched with terms in the documents
- However, many concepts or objects can be described in multiple ways (synonyms), e.g. image, picture, photo
- The retrieval process can have a low recall if the search query contains a synonym that is not frequent in the corpus of documents

- Latent Semantic Indexing (LSI also called Latent Semantic Analysis LSA) tries to solve the problem of synonyms by identifying terms that statistically appear together.
- It assumes that there are some underlying latent semantic structure in the data that is partially obscured by the randomness of word choice.
- It uses a statistical technique, called Singular Value Decomposition (SVD), to estimate this latent structure.
- It identifies syntactical different but semantically similar terms using a structure called hidden "concept" space

- Given the term-document matrix (A) with the size m × n (n is number of documents, m is the number of terms in the vocabulary)
- LSI uses SVD to factorize A into a product of three matrices:

 $A = U\Sigma V^T$

Latent Semantic Indexing

$$A = U\Sigma V^T$$

• Where

- U
 - Is a $m \times r$ matrix and its columns, called left singular values, are eigenvectors associated with r non-zero eigenvalues of AA^{T} .
 - The columns of U are unit orthogonal vectors, i.e. $U^T U = I$
- -V
 - Is an $n \times r$ matrix and its columns, called right singular vectors, are eigenvectors associated with the r non-zero eigenvalues of $A^T A$.
 - The columns of V are also unit orthogonal vectors, i.e., $V^T V = I$.
- Σ is a $r \times r$ diagonal matrix, $\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_r), \sigma_i > 0$. The diagonal values σ_i
 - Are called singular values
 - Are non-negative square roots of r non-zero eigenvalues of AA^{T} .
 - They are arranged in decreasing order, i.e. $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$

Latent Semantic Indexing

- Notes:
- 1. The initial U is an $m \times m$ matrix, V is an $n \times n$ matrix and Σ is an $m \times n$ matrix.
- 2. Σ 's diagonal consists of non-negative eigenvalues of AA^T or A^TA .
 - However, due to zero eigenvalues, Σ has zero-valued rows and columns.
 - Matrix multiplication tells us that those zero-valued rows and columns from Σ can be dropped.
 - Then, the last m r columns in U and the last n r columns in V can also be dropped.
- *3.* r is the rank of $A, r \leq min(m, n)$

• An eigenvectors is a non-negative vector whose direction does not change when a linear transformation is applied to it:

$$T(v) = \lambda v$$

- Where
 - $T(\cdot)$ is a linear transformation
 - $-\lambda$ is the eigenvalue
- For a matrix *A*, the eigenvectors and eigenvalue gives us the following property:

$$Av = \lambda v \text{ or } (A - \lambda I)v = 0$$

• To compute the eigenvalues, we must solve the linear system $det(A - \lambda I) = 0$

- Intuitive Idea of LSI:
 - The intuition of LSI is that SVD rotates the axes of n-dimensional space of A such that
 - The first axis runs along the largest variation (variance) of terms among the documents
 - The second axis runs along the second largest variation (variance) of term
 - And so on

Summary

- This course presented:
 - IR architecture
 - IR query types
 - Document representation
 - Weighting schemas
 - Text preprocessing
 - Inverted Indexes
 - LSI

• [Liu 2011] Bing Liu: Web Data Mining, Exploring Hyperlinks, Contents, and Usage Data, 2011