
Faculty of

Automatic

Control and

Computers

Computer

Science and

Engineering

Department

Information Retrieval
Systems

Ciprian-Octavian Truică

ciprian.truica@cs.pub.ro

University

Politehnica

of Bucharest

mailto:ciprian.truica@cs.pub.ro

Overview

15.01.2019 2

• Information Retrieval

• Text Preprocessing

• Inverted Index

• Latent Semantic Indexing

Overview

15.01.2019 3

• Information Retrieval

• Text Preprocessing

• Inverted Index

• Latent Semantic Indexing

Information Retrieval

15.01.2019 4

• Information Retrieval (IR) is the field that
deals with retrieving relevant information
from a large corpus of records given a user
search query

• In traditional IR:

– The records are documents:

– The search query is a list of words (terms)

– The output contains the relevant documents for
the search query

Information Retrieval Architecture

15.01.2019 5

Information Retrieval Architecture

15.01.2019 6

• User Queries types:
– Keywords queries (search terms – most used): The user

uses a list of terms (at list one) with the aim to retrieve
documents that contain at least one or all of the search
terms

• Soft IR systems – the documents returned contain at least one
keyword (logical OR between the terms – added automatically)

• Hard IR systems – the documents returned contain all the
keywords (logical AND between the terms – added automatically)

• In some IR systems the order of the keywords is also important –
returns documents where the list of words appear together

– Note:

• Bag of Words (BOW) approach is used when the order is not important

• N-gram approach is used when the order is important

Information Retrieval Architecture

15.01.2019 7

• User Queries types:

– Boolean queries (BOW approach): the user can
use Boolean operators in their search queries
(AND, OR, and NOT)

• Example 1: ‘data or web’ or ‘data and web’ – different
results

• Example 2: ‘data or web and not datamining’

Information Retrieval Architecture

15.01.2019 8

• User Queries types:

– Phrase queries (n-gram approach):

• Such a query consists of a sequence of words that make
up a phrase

• The documents returned must contain at least one
instance of this phrase

– Proximity queries

• Is a relaxed version of the phase query and can be a
combination of terms and phrases

• These queries seek the documents that contain the
search term in close proximity of each other

Information Retrieval Architecture

15.01.2019 9

• User Queries types:

– Full document queries

• Users search for documents that are similar to
the query document

–Natural language queries

• This is the most complex case

• The user asks a question and the IR system
returns an answer to the that question

• Used in question-answering systems

Information Retrieval Architecture

15.01.2019 10

• Query operation module

– Can range between very

• Simple: just passes the query to the retrieval system

• Complex: does preprocessing

• Indexer module

– Used to index the original raw documents in some
data structures

– The data structures enables efficient retrieval

– Most common is the inverted index

Information Retrieval Architecture

15.01.2019 11

• Retrieval system module:

– Computes a relevance score (for the user query)
for each retrieved documents

– According the relevance the documents are
ranked and presented to the user

• Document collection module:

– A File System (FS), e.g. OSFS, HDFS, etc.

– A database (Relational or NoSQL).

Information Retrieval Models

15.01.2019 12

• The way in which terms and documents are
represented governs the IR model

• There are three main document representations:

– Boolean model

– Vector Space model

– Statistical Language model

Information Retrieval
Document Representations

15.01.2019 13

• A document is represented using the bag of
words (terms) model:

• Given a set (collection) of 𝑛 documents:
𝐷 = 𝑑1, 𝑑2,… , 𝑑𝑛 , 𝑛 = 𝐷

• All the distinct terms in the collection of
documents can be modeled as a vocabulary:

𝑉 = 𝑡1, 𝑡2, … , 𝑡𝑚 ,𝑚 = 𝑉

Information Retrieval
Document Representations

15.01.2019 14

• The entire corpus of documents can be represented as a
matrix (document-term matrix) where the lines represent the
document in 𝐷 and the columns represent the terms in 𝑉

• Each cell in the matrix is a weight (𝑤𝑖𝑗) associated for the

number of occurrences of a term in the document.

• A document 𝑑𝑖 ∈ 𝐷 is modeled as a vector 𝑑𝑖 =

𝑤𝑖1, 𝑤𝑖2, … ,𝑤𝑗𝑚 where each 𝑤𝑖𝑗 is the weight associated to

the term 𝑡𝑗 ∈ 𝑉

Information Retrieval
Document Representations

15.01.2019 15

• The document-term matrix is:

Information Retrieval
Weighting Schemas

15.01.2019 16

• Boolean model

– This is one of the simples models used to
represent the weights in the document-term
matrix

– This model only considers if a term is present or
not in a document, 𝑤𝑖𝑗 ∈ 0, 1 :

Information Retrieval
Weighting Schemas

15.01.2019 17

• Boolean model

– This model is used for Boolean queries

– For example, given 3 terms 𝑥, 𝑦 𝑎𝑛𝑑 𝑧:

• 𝑥 𝐴𝑁𝐷 𝑦 𝐴𝑁𝐷 𝑁𝑂𝑇 𝑧 says that a document must
contain both 𝑥 and 𝑦 but not he term 𝑧

• 𝑥 𝑂𝑅 𝑧 says that a document must contain at least one
of the terms 𝑥 or 𝑧

Information Retrieval
Weighting Schemas

15.01.2019 18

• Vector space model

– One of the best known and widely used IR models

– Each weight is computed as a variation of the number of
occurrences of the term in the document or collection of
documents

– Most widely used representation are:

• 𝑓𝑡,𝑑 the frequency of the term 𝑡 in the document 𝑑 is computed by
counting

• 𝑇𝐹 𝑡, 𝑑 term frequency, the normalization of 𝑓𝑡,𝑑
• 𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑, 𝐷 term frequency – inverted document frequency

• 𝑂𝑘𝑎𝑝𝑖 𝐵𝑀25
– Okapi is the name of the information system proposed by Robertson, Spärck

Jones, et al.

– BM Best match

Information Retrieval
Weighting Schemas

15.01.2019 19

• Weighting schemas

– 𝑇𝐹 𝑡, 𝑑 term frequency is a normalization of the
𝑓𝑡,𝑑

– Logarithmic normalized 𝑇𝐹 𝑡, 𝑑 :
𝑇𝐹 𝑡, 𝑑 = 1 + log 𝑓𝑡,𝑑

– This has a bias towards longer documents because
in longer documents terms that are irrelevant can
appear multiple times and thus these terms have
a higher 𝑇𝐹(𝑡, 𝑑)

Information Retrieval
Weighting Schemas

15.01.2019 20

• Weighting schemas

– To removes the bias towards longer documents,
the augmented 𝑇𝐹 𝑡, 𝑑

– For 𝐾 = 0.5 we obtained the double
normalization form of the 𝑇𝐹 𝑡, 𝑑 :

Information Retrieval
Weighting Schemas

15.01.2019 21

• Weighting schemas

– Another way to removes the bias towards longer
documents is normalize the frequency of the term
with the length of the document

Information Retrieval
Weighting Schemas

15.01.2019 22

• Weighting schemas
– The 𝐼𝐷𝐹(𝑡,𝐷) is a measure of how much information a

term provides:
• Weather a term is common or rare across all documents

• 𝑛 is the number of documents in 𝐷

• 𝑛𝑡 is the number of documents where term 𝑡 appears:

– 𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑,𝐷 is used to determine the importance of a
term for a document in a corpus of documents:

𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑, 𝐷 = 𝑇𝐹 𝑡, 𝑑 ⋅ 𝐼𝐷𝐹 𝑡, 𝐷

Information Retrieval
Weighting Schemas

15.01.2019 23

• Weighting Schemas
– Okapi BM25 is another weighting schema used to

compute the weights for the document-term matrix

𝑂𝑘𝑎𝑝𝑖𝐵𝑀25 𝑡, 𝑑, 𝐷 =
𝑇𝐹𝐼𝐷𝐹 𝑡,𝑑,𝐷 ⋅ 𝑘1+1

𝑇𝐹 𝑡,𝑑 +𝑘1⋅ 1−𝑏+𝑏⋅
𝑑

𝑎𝑣𝑔
𝑑′∈D

𝑑′

– The free parameters values are: 𝑘1 ∈ [1.2, 2.0] and 𝑏 =
0.75

– 𝑑 is the

– 𝑎𝑣𝑔𝑑′∈D 𝑑′ is the average document length

Information Retrieval
Ranking Functions

15.01.2019 24

• Ranking functions
– Given a search query 𝑄 = 𝑞1 , 𝑞2, … , 𝑞𝑘 where 𝑞𝑖 are

the query terms (𝑖 = 1, 𝑘, 𝑘 = |𝑄|),

– The objective is to retrieve the documents that contain
the terms in the search query 𝑄

– We need to give a score that measures the importance of
each document to the query

– Then order the list of documents using this score and
create a documents ranking

Information Retrieval
Ranking Functions

15.01.2019 25

• Ranking functions

– The score for a document 𝑑 ∈ 𝐷 is the sums of
the weights (𝑇𝐹𝐼𝐷𝐹, 𝑂𝑘𝑎𝑝𝑖𝐵𝑀25) computed for
each search term in query 𝑄

– Using one of these scores, the documents’ relevance to
the query is determined

Information Retrieval
Weighting Schemas

15.01.2019 26

• Statistical Language Model
– Are based on probability and have foundations in statistical

theory

– Given a set of 𝑛 documents 𝐷 = 𝑑1, 𝑑2,… , 𝑑𝑛 and a
query 𝑄 = 𝑞1 , 𝑞2, … , 𝑞𝑘

– In the statistical language model, we consider a query 𝑄 as
being “generated” by a probabilistic model based on a
document 𝑑𝑖

– Using the Bayes rule, the rank of documents are estimated
by the posterior probability 𝑝 𝑑𝑖|𝑞 :

Information Retrieval
Weighting Schemas

15.01.2019 27

• Statistical Language Model
– For ranking, 𝑝 𝑄 is not needed, as is the same for all the documents

– The model assumes that each term is independently generated,
which is essentially a multinomial distribution over words, and so:

– Where 𝑓𝑗𝑞 is the number of times the term 𝑡𝑗 appears in 𝑄

– So, the retrieve problem is reduced to estimating𝑝 𝑡𝑗|𝑑𝑖 :

𝑝 𝑡𝑗|𝑑𝑖 =
𝑓𝑖𝑗
𝑑𝑖

– Where 𝑓𝑖𝑗 is actually the frequency of word 𝑡𝑗 in document 𝑑𝑖, 𝑓𝑡𝑗,𝑑𝑖

Overview

15.01.2019 28

• Information Retrieval

• Text Preprocessing

• Inverted Index

• Latent Semantic Indexing

Text Preprocessing

15.01.2019 29

• Before the documents in a collection are used
for retrieval some preprocessing steps are
usually performed

• These steps may include:

– Expanding contractions

– Sentence tokenization

– Extracting terms

– Removing stop words and punctuation

Text Preprocessing

15.01.2019 30

• Expanding contractions, i.e., shortened
versions of the written and spoken forms of a
word, syllable, or word group, created by
omission of internal letters and sounds

• Sentence tokenization is the process by which
the text of a document is split in sentences.

– This step can be skipped if the terms are not
processed further

Text Preprocessing

15.01.2019 31

• Extracting terms is the process by which each
term is determined

– Sometimes it is useful to extract the stem or the
lemma of a word (not useful for opinion mining
and sentiment analysis)

– To extract the lemma sentence tokenization is
used and also a part of speech tagger

Text Preprocessing

15.01.2019 32

• Extracting term – stemming

– In many languages, a word has various forms depending
on the context, e.g. verbs have the gerund form (-ing
termination) or nouns can be singular or plural.

– This variations cause low retrieval because a relevant
document can contain variation of a word but not the
exact word

– By removing the suffixes and prefixes of a word we can
obtain the stem of the word

– Stemming is the process of extracting the stems

– The stems sometimes are not accurate, e.g. the words
“cops” and “cope” are both reduce to “cop”

Text Preprocessing

15.01.2019 33

• Extracting term – lemmatization

– A more accurate way of extracting the root word is
by extracting the lemma, this process is called
lemmatization

– Lemmatization uses the part of speech of a word,
the process that extracts the part of speech is
called Part of Speech Tagging (PoS)

– This is a very costly process but it increases the
accuracy of the retrieval

Text Preprocessing

15.01.2019 34

• Removing stop words and punctuation

– Stop words are frequently occurring and
insignificant words in a language, e.g.: the, a, an,
etc.

– These can be removes together with punctuation
as they add no significate information to the
process of information retrieval

– For some tasks are important, e.g. opinion mining
and sentiment analysis.

Overview

15.01.2019 35

• Information Retrieval

• Text Preprocessing

• Inverted Index

• Latent Semantic Indexing

Inverted Index

15.01.2019 36

• The main purpose of IR is to retrieve documents
given a search query

• One approach is to scan the collection of documents
and to return the documents that match the query
terms.

– This method is actually impractical for a large collection of
documents

• A second approach is to build a data structure
(inverted index) that maps each word to the
documents where it appears.

Inverted Index

15.01.2019 37

• How to construct an inverted index

1. Given a collection of documents 𝐷 =
{𝑑1 , 𝑑2 , … , 𝑑𝑛}, 𝑛 = 𝐷

2. Attach to each documents an unique identifier
𝑖𝑑1 , 𝑖𝑑2 , … , 𝑖𝑑𝑛 where 𝑖𝑑𝑖 is the unique

identifier for document 𝑑𝑖
3. Construct the vocabulary

4. Attach to each word in the vocabulary the list of
documents that contain the word

Inverted Index

15.01.2019 38

• In practice, an inverted index is a dictionary
with the key the word and the value a list of
documents.

𝑡𝑖 = 𝑖𝑑𝑗| 𝑡𝑖 ∈ 𝑑𝑖

Inverted Index

15.01.2019 39

• Sometimes, additional information can be
stored in the inverted index, e.g.:

– The term frequency of the word in the document

– A list with positions, etc.

• Where:

– 𝑓𝑖𝑗 is the frequency of term 𝑡𝑖 in document 𝑑𝑖

– 𝑜𝑘 , 𝑘 = 1, 𝑑𝑖 is the position of term 𝑡𝑖 in
document 𝑑𝑖

Inverted Index

15.01.2019 40

• E.g.

𝑖𝑑1: I am learning about inverted indexes.

𝑖𝑑2: Inverted indexes are used in information retrieval.

𝑖𝑑3: Applications that retrieve documents use inverted indexes.

• The vocabulary is:
{𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑, 𝑖𝑛𝑑𝑒𝑥𝑒𝑠, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙, 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠,
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}

• Notes:
– the stop words were removed: I, am, about, are, used, in, that, use

– Stemming or lemmatization can be applied, in this case it wasn’t.

Inverted Index

15.01.2019 41

• Simple Inverted Index

Inverted Index

15.01.2019 42

• Complex Inverted Index:

Inverted Index

15.01.2019 43

• Searching with inverted indexes:

– Given a search terms query each term is searched in the
index and a concatenated list of all the document unique
identifiers without duplicates is returned

– Example:

• For the search query ‘applications information documents’ the
following documents are going to be returned:{𝑖𝑑3, 𝑖𝑑2}

• If a ranking function is used then document 𝑑3 will have a bigger
weight that document 𝑑2

Overview

15.01.2019 44

• Information Retrieval

• Text Preprocessing

• Inverted Index

• Latent Semantic Indexing

Latent Semantic Indexing

15.01.2019 45

• The retrieval models used so far are based on
keyword or term matching, i.e. terms in the search
query are matched with terms in the documents

• However, many concepts or objects can be described
in multiple ways (synonyms), e.g. image, picture,
photo

• The retrieval process can have a low recall if the
search query contains a synonym that is not frequent
in the corpus of documents

Latent Semantic Indexing

15.01.2019 46

• Latent Semantic Indexing (LSI – also called Latent Semantic
Analysis LSA) tries to solve the problem of synonyms by
identifying terms that statistically appear together.

• It assumes that there are some underlying latent semantic
structure in the data that is partially obscured by the
randomness of word choice.

• It uses a statistical technique, called Singular Value
Decomposition (SVD), to estimate this latent structure.

• It identifies syntactical different but semantically similar terms
using a structure called hidden “concept” space

Latent Semantic Indexing

15.01.2019 47

• Given the term-document matrix (𝐴) with the
size 𝑚× 𝑛 (𝑛 is number of documents, 𝑚 is
the number of terms in the vocabulary)

• LSI uses SVD to factorize 𝐴 into a product of
three matrices:

𝐴 = 𝑈Σ𝑉𝑇

Latent Semantic Indexing

15.01.2019 48

𝐴 = 𝑈Σ𝑉𝑇

• Where
– 𝑈

• Is a 𝑚× 𝑟 matrix and its columns, called left singular values, are eigenvectors
associated with 𝑟 non-zero eigenvalues of 𝐴𝐴𝑇 .

• The columns of 𝑈 are unit orthogonal vectors, i.e. 𝑈𝑇𝑈 = 𝐼

– 𝑉
• Is an 𝑛 × 𝑟 matrix and its columns, called right singular vectors, are eigenvectors

associated with the 𝑟 non-zero eigenvalues of 𝐴𝑇𝐴.

• The columns of 𝑉 are also unit orthogonal vectors, i.e., 𝑉𝑇𝑉 = 𝐼.

– Σ is a 𝑟 × 𝑟 diagonal matrix, Σ = 𝑑𝑖𝑎𝑔 𝜎1, 𝜎2,… , 𝜎𝑟 , 𝜎𝑖 > 0. The
diagonal values 𝜎𝑖
• Are called singular values

• Are non-negative square roots of r non-zero eigenvalues of 𝐴𝐴𝑇 .

• They are arranged in decreasing order, i.e. 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑟 > 0

Latent Semantic Indexing

15.01.2019 49

• Notes:

1. The initial 𝑈 is an 𝑚 ×𝑚 matrix, 𝑉 is an 𝑛 × 𝑛 matrix and Σ
is an 𝑚 × 𝑛 matrix.

2. Σ’s diagonal consists of non-negative eigenvalues of 𝐴𝐴𝑇 or
𝐴𝑇𝐴.
– However, due to zero eigenvalues, Σ has zero-valued rows and

columns.

– Matrix multiplication tells us that those zero-valued rows and
columns from Σ can be dropped.

– Then, the last 𝑚− 𝑟 columns in 𝑈 and the last 𝑛 − 𝑟 columns in 𝑉
can also be dropped.

3. 𝑟 is the rank of 𝐴, 𝑟 ≤ 𝑚𝑖𝑛 𝑚, 𝑛

Latent Semantic Indexing

15.01.2019 50

• An eigenvectors is a non-negative vector whose direction does
not change when a linear transformation is applied to it:

𝑇 𝑣 = 𝜆𝑣

• Where
– 𝑇(⋅) is a linear transformation

– 𝜆 is the eigenvalue

• For a matrix 𝐴, the eigenvectors and eigenvalue gives us the
following property:

𝐴𝑣 = 𝜆𝑣 or 𝐴 − 𝜆𝐼 𝑣 = 0

• To compute the eigenvalues, we must solve the linear system
det 𝐴 − 𝜆𝐼 = 0

Latent Semantic Indexing

15.01.2019 51

• Intuitive Idea of LSI:

– The intuition of LSI is that SVD rotates the axes of
𝑛-dimensional space of A such that

• The first axis runs along the largest variation (variance)
of terms among the documents

• The second axis runs along the second largest variation
(variance) of term

• And so on

Summary

15.01.2019 52

• This course presented:
– IR architecture

– IR query types

– Document representation

– Weighting schemas

– Text preprocessing

– Inverted Indexes

– LSI

References

15.01.2019 53

• [Liu 2011] Bing Liu: Web Data Mining,
Exploring Hyperlinks, Contents, and Usage
Data, 2011

