o Faculty of Computer
PUrIl_I;/egS_Ity Automatic ‘ Science and
olitennica Control and Engineering
Computers Department

of Bucharest

Information Retrieval
Systems

Ciprian-Octavian Truica
ciprian.truica@cs.pub.ro

mailto:ciprian.truica@cs.pub.ro

* Information Retrieval

* Text Preprocessing
* Inverted Index
* Latent Semantic Indexing

15.01.2019 2

* Information Retrieval

* Text Preprocessing

* Inverted Index

e Latent Semantic Indexing

15.01.2019 3

, Information Retrieval

* |Information Retrieval (IR) is the field that
deals with retrieving relevant information
from a large corpus of records given a user
search query

* |In traditional IR:
— The records are documents:
— The search query is a list of words (terms)

— The output contains the relevant documents for
the search query

15.01.2019 4

15.01.2019

Information Retrieval Architecture

IR Architecture

The user
User
query
.| Query
user s
Ssedback opelqtlons
Executable
query
Retrieval -
Ranked system
documents

Document
collection

indexer

Document
index

, Information Retrieval Architecture

* User Queries types:

— Keywords queries (search terms — most used): The user
uses a list of terms (at list one) with the aim to retrieve

documents that contain at least one or all of the search
terms

* Soft IR systems —the documents returned contain at least one
keyword (logical OR between the terms — added automatically)

* Hard IR systems—the documents returned contain all the
keywords (logical AND between the terms —added automatically)

* In some IR systems the order of the keywords is also important —
returns documents where the list of words appear together

— Note:

* Bagof Words (BOW) approach is used when the order is not important
* N-gram approachis used when the order is important

15.01.2019

, Information Retrieval Architecture

* User Queries types:

— Boolean queries (BOW approach): the user can
use Boolean operators in their search queries
(AND, OR, and NOT)

 Example 1: ‘data or web’ or ‘data and web’ — different
results

 Example 2: ‘data or web and not datamining’

15.01.2019

9 Information Retrieval Architecture

* User Queries types:

— Phrase queries (n-gram approach):

* Such a query consists of a sequence of words that make
up a phrase

* The documents returned must contain at least one
instance of this phrase
— Proximity queries

* |s a relaxed version of the phase query and can be a
combination of terms and phrases

* These queries seek the documentsthat contain the
search term in close proximity of each other

15.01.2019 8

9 Information Retrieval Architecture

* User Queries types:

— Full document queries

e Users search for documents that are similar to
the query document

—Natural language queries
* This is the most complex case

* The user asks a question and the IR system
returns an answer to the that question

e Used in question-answering systems

15.01.2019

, Information Retrieval Architecture

* Query operation module

— Can range between very
e Simple: just passes the query to the retrieval system
 Complex: does preprocessing

 Indexer module

— Used to index the original raw documents in some
data structures

— The data structures enables efficient retrieval
— Most common is the inverted index

15.01.2019 10

, Information Retrieval Architecture

* Retrieval system module:

— Computes a relevance score (for the user query)
for each retrieved documents

— According the relevance the documents are
ranked and presented to the user

e Document collection module:

— A File System (FS), e.g. OSFS, HDFS, etc.
— A database (Relational or NoSQL).

15.01.2019 11

, Information Retrieval Models

 The way in which terms and documents are
represented governs the IR model

 There are three main document representations:
— Boolean model
— Vector Space model
— Statistical Language model

15.01.2019 12

Information Retrieval

9 Document Representations

 Adocumentis represented using the bag of
words (terms) model:

e Given a set (collection) of n documents:
D = {dl’ dz, ...,dn},n — |D|

e All the distinct terms in the collection of
documents can be modeled as a vocabulary:
V={t,ty,.., tn},m=|V|

15.01.2019 13

Information Retrieval

Document Representations

* The entire corpus of documentscan be represented as a
matrix (document-term matrix) where the lines represent the

documentin D and the columns represent the termsin V

* Each cellin the matrix is a weight (w;;) associated for the
number of occurrences of a term in the document.

* Adocumentd; € D is modeled as a vectord; =
{Wil, Wi, «e) ij} where each w;; is the weight associated to
thetermt¢; €V

15.01.2019 14

Information Retrieval

s Document Representations

e The document-term matrix is:

t1 0 tm
dq Wit Wi Wim
d, W1 Wy Wom

15.01.2019 15

9 Information Retrieval

Weighting Schemas

e Boolean model

— This is one of the simples models used to
represent the weights in the document-term
matrix

— This model only considers if a term is present or
not in a document, w;; € {0, 1}:
1 if t; appears ind;

Wij = .
0 otherwise

15.01.2019 16

, Information Retrieval

Weighting Schemas

* Boolean model
— This model is used for Boolean queries

— For example, given 3 terms x,y and z:

* (x AND y) AND (NOT z) says that a document must
contain both x and y but not he term z

* x OR z says that a document must contain at least one
of the terms x or z

15.01.2019 17

9 Information Retrieval

Weighting Schemas

* Vector space model
— One of the best known and widely used IR models

— Each weight is computed as a variation of the number of
occurrences of the term in the document or collection of
documents

— Most widely used representation are:
* ftq the frequency of the term ¢ in the document d is computed by
counting
 TF(t,d) term frequency, the normalization of f; 4
« TFIDF(t,d, D) term frequency — inverted document frequency
* Okapi BM25

— Okapiis the name of the information system proposed by Robertson, Sparck
Jones, et al.

— BM Best match

15.01.2019 18

9 Information Retrieval

Weighting Schemas

* Weighting schemas

— TF(t,d) term frequency is a normalization of the

fta

— Logarithmic normalized TF(t,d):
TFE(t,d) =1+logf;q

— This has a bias towards longer documents because
in longer documents terms that are irrelevant can

appear multiple times and thus these terms have
a higher TF(t,d)

15.01.2019 19

9 Information Retrieval

Weighting Schemas

* Weighting schemas

— To removes the bias towards longer documents,
the augmented TF(t, d)
ft.a

max /

— For K = 0.5 we obtained the double
normalization form of the TF (¢, d):

TF(t,d) = 0.5+ 0.5 - Jea

max /

TF(t,d) =K + (1 —K) -

15.01.2019 20

9 Information Retrieval

Weighting Schemas

* Weighting schemas

— Another way to removes the bias towards longer
documents is normalize the frequency of the term
with the length of the document

ft.a
TF(t,d) = '
() Zt’edft',d

15.01.2019 21

9 Information Retrieval

Weighting Schemas

* Weighting schemas

— The IDF(t,D) is a measure of how much information a
term provides:
 Weather a term is common or rare across all documents
* nisthe number of documentsin D
* n,isthe number of documents where term t appears:
n
IDF =1 + log—
ng
— TFIDF(t,d,D) is used to determine the importance of a

term for a documentin a corpus of documents:
TFIDF(t,d,D) = TF(t,d) - IDF(t,D)

15.01.2019 22

9 Information Retrieval

Weighting Schemas

* Weighting Schemas

— Okapi BM25 is another weighting schema used to
compute the weights for the document-term matrix

: TFIDF(t,d,D)-(k;+1
OkapiBM?25(t,d,D) = (£.4.D) € 1+IC)”
TF(t,d)+k1-(1—b+b-wgd,ED (|d'|))
— The free parameters values are: k; € [1.2,2.0] and b =
0.75
— |d]|is the

— avgyrep (|d']) is the average documentlength

15.01.2019 23

Information Retrieval

Ranking Functions

* Ranking functions

15.01.2019

Given a search query Q = (g4, 95, ..-,q;) Where q; are
the query terms (i = 1,k, k = 1Q1),

The objective is to retrieve the documents that contain
the termsin the search query Q

We need to give a score that measures the importance of
each documentto the query

Then order the list of documents using this score and
create a documents ranking

24

9 Information Retrieval

Ranking Functions

* Ranking functions

— The score for a document d € D is the sums of
the weights (TFIDF, OkapiBM?25) computed for
each search term in query Q

k
S_TFIDF(Q,d,D) = z TFIDF(q;,d, D)
=1

l

k
S OkapiBM25(Q,d, D) = z OkapiBM25(q;, d, D)
=1

— Using one of these scores, the documents’ relevance to
the query is determined

15.01.2019 25

, Information Retrieval

Weighting Schemas

 Statistical Language Model

— Are based on probability and have foundations in statistical
theory

— Given a set of n documents D ={d,, d,,...,d,,} and a
query Q = (q4, 92, -, Qi)

— In the statistical language model, we consider a query Q as
being “generated” by a probabilistic model based on a
document d;

— Using the Bayes rule, the rank of documents are estimated
by the posterior probability p(d;|q):

_p(@Qld;) - p(d;)
p(d;|Q) = ()

15.01.2019 26

Information Retrieval

Weighting Schemas

e Statistical Language Model

— Forranking, p(Q) is not needed, as is the same for all the documents

— The model assumes that each term is independently generated,
which is essentially a multinomial distribution over words, and so:

k m
p(Q = (q1, 92, -, q)ld;) = np(qjldi) = np(ti|di)fiq
j=1 j=1

— Where f, is the number of times the term t; appears in Q

— So, the retrieve problem is reduced to estimating p(tj|dl-):

fi.
p(tld;) = Fi'

— Where f;; is actually the frequency of word t; in document d;, ftj,dl.

15.01.2019 27

* Information Retrieval

* Text Preprocessing

* Inverted Index

e Latent Semantic Indexing

15.01.2019 28

, Text Preprocessing

* Before the documents in a collection are used
for retrieval some preprocessing steps are
usually performed

* These steps may include:
— Expanding contractions
— Sentence tokenization

— Extracting terms
— Removing stop words and punctuation

15.01.2019

29

, Text Preprocessing

* Expandingcontractions,i.e., shortened
versions of the written and spoken forms of a
word, syllable, or word group, created by
omission of internal letters and sounds

* Sentence tokenizationis the process by which
the text of a document is split in sentences.

— This step can be skipped if the terms are not
processed further

15.01.2019 30

, Text Preprocessing

* Extracting terms is the process by which each
term is determined

— Sometimes it is useful to extract the stem or the
lemma of a word (not useful for opinion mining
and sentiment analysis)

— To extract the lemma sentence tokenization is
used and also a part of speech tagger

15.01.2019 31

, Text Preprocessing

* Extracting term — stemming

— In many languages, a word has various forms depending
on the context, e.g. verbs have the gerund form (-ing
termination) or nouns can be singular or plural.

— This variations cause low retrieval because a relevant
document can contain variation of a word but not the
exact word

— By removing the suffixes and prefixes of a word we can
obtain the stem of the word

— Stemming is the process of extracting the stems

— The stemssometimes are not accurate, e.g. the words
“cops” and “cope” are both reduce to “cop”

15.01.2019 32

, Text Preprocessing

* Extracting term —lemmatization

— A more accurate way of extracting the root word is
by extracting the lemma, this process is called
lemmatization

— Lemmatization uses the part of speech of a word,
the process that extracts the part of speech is
called Part of Speech Tagging (PoS)

— This is a very costly process but it increases the
accuracy of the retrieval

15.01.2019 33

, Text Preprocessing

* Removing stop words and punctuation

— Stop words are frequently occurring and
insignificant words in a language, e.g.: the, a, an,
etc.

— These can be removes together with punctuation

as they add no significate information to the
process of information retrieval

— For some tasks are important, e.g. opinion mining
and sentiment analysis.

15.01.2019 34

* Information Retrieval

* Text Preprocessing

* Inverted Index

e Latent Semantic Indexing

15.01.2019 35

, Inverted Index

 The main purpose of IR is to retrieve documents
given a search query

* One approach is to scan the collection of documents
and to return the documents that match the query
terms.

— This method is actually impractical for a large collection of
documents
* A second approach is to build a data structure
(inverted index) that maps each word to the
documents where it appears.

15.01.2019 36

, Inverted Index

e How to construct an inverted index

1. Given a collection of documents D =
{dy,dy, ..., dp}, n = |D|

2. Attach to each documents an unique identifier
{id,, id,, ...,id, } where id; is the unique
identifier for document d;

3. Construct the vocabulary

Attach to each word in the vocabulary the list of
documents that contain the word

15.01.2019 37

, Inverted Index

* |n practice, aninverted index is a dictionary
with the key the word and the value a list of
documents.

t; = {id;| t; € d;}

15.01.2019 38

, Inverted Index

e Sometimes, additional information can be
stored in the inverted index, e.g.:

— The term frequency of the word in the document
— A list with positions, etc.

ti — {< ld],fl], [01,02, ""0|dj|] > |ti € dl}
* Where:

— fij is the frequency of term ¢t; in document d;

— 04,k = 1,|d;| is the position of term ¢; in
document d;

15.01.2019 39

Inverted Index

* E.8.

id,:1am learning about inverted indexes.

id,: Inverted indexes are used in information retrieval.

id4: Applications that retrieve documents use inverted indexes.

 The vocabulary is:

{learning, inverted, indexes, inf ormation, retrieval, applications,
retrieve, documents}

* Notes:
— the stop words were removed: |, am, about, are, used, in, that, use
— Stemming or lemmatization can be applied, in this case it wasn’t.

15.01.2019 40

, Inverted Index

* Simple Inverted Index
learning: [id,],
inverted: |id,,id,,id;],
indexes: |id,id,,id;],
information: [id,],
retrieval: [id,],
applications: [id;],
retrieve: |id;],
documents: |id;]

15.01.2019 41

, Inverted Index

 Complex Inverted Index:
learning: [< idq,1,[3] >],
inverted: [<idq, 1,[5] >,<id,, 1,[1] >, < ids,1,[6] >],
indexes:|<idy, 1,[5] >, <id,, 1,(2] >, < ids, 1,[6] >],
information: [<id,,1,[5] >],
retrieval: |< id,,1,[7] >],
applications: |<ids, 1,[1] >],
retrieve: |< ids, 1,[3]],
documents: [< ids, 1, [4] >]

15.01.2019 42

Inverted Index

* Searching with inverted indexes:

— Given a search terms query each term is searched in the
index and a concatenated list of all the document unique
identifiers without duplicates is returned

— Example:
* For the search query ‘applications information documents’ the
following documents are going to be returned:{ids, id,}
* If a ranking function is used then document d; will have a bigger
weight that document d,

15.01.2019 43

* Information Retrieval

* Text Preprocessing

* Inverted Index

e Latent Semantic Indexing

15.01.2019

44

, Latent Semantic Indexing

* The retrieval models used so far are based on
keyword or term matching, i.e. terms in the search
qguery are matched with terms in the documents

* However, many concepts or objects can be described
in multiple ways (synonyms), e.g. image, picture,
photo

* The retrieval process can have a low recall if the
search query contains a synonym that is not frequent
in the corpus of documents

15.01.2019 45

, Latent Semantic Indexing

e Latent Semantic Indexing (LSI — also called Latent Semantic
Analysis LSA) tries to solve the problem of synonyms by
identifying terms that statistically appear together.

* |t assumes that there are some underlying latent semantic
structure in the data that is partially obscured by the
randomness of word choice.

* |t uses a statistical technique, called Singular Value
Decomposition (SVD), to estimate this latent structure.

* It identifies syntactical different but semantically similar terms
using a structure called hidden “concept” space

15.01.2019 46

, Latent Semantic Indexing

e Given the term-document matrix (4) with the
sizem X n (nis number of documents, m is
the number of terms in the vocabulary)

e LSl uses SVD to factorize A into a product of

three matrices:
A=UxVT

15.01.2019

47

Latent Semantic Indexing

A=U3VT
* Where

* Isam X r matrix and its columns, called left singular values, are eigenvectors
associated with r non-zero eigenvalues of AA”.

 The columns of U are unit orthogonal vectors, i.e. UTU = |

* Isan n X r matrix and its columns, called right singular vectors, are eigenvectors
associated with the r non-zero eigenvalues of AT A.

* The columns of V are also unit orthogonal vectors, i.e.,, VIV = I.
— Yisar X rdiagonal matrix, X = diag(oy,05, ...,0,),0; > 0. The
diagonal values o;
* Are called singular values

* Are non-negative square roots of r non-zero eigenvalues of AAT.
e They are arranged in decreasing order, i.e. 07y =20, = ...= 0, > 0

15.01.2019 48

9 Latent Semantic Indexing

* Notes:

1. The initial U is an m X m matrix, V is an n X n matrix and 2

IS an m X n matrix.
2. Y’s diagonal consists of non-negative eigenvalues of AA" or

AT A.

— However, due to zero eigenvalues, X has zero-valued rows and
columns.

— Matrix multiplication tells us that those zero-valued rows and
columns from X can be dropped.

— Then, the last m — r columns in U and the lastn — r columns in V
can also be dropped.

3. ristherankof 4, r < min(m,n)

15.01.2019 49

9 Latent Semantic Indexing

* An eigenvectors is a non-negative vector whose direction does
not change when a linear transformation is applied to it:
T(v) = Av
« Where

— T(-) is alinear transformation
— Ais the eigenvalue

* Fora matrix A, the eigenvectors and eigenvalue gives us the
following property:

Av=Avor(A—ADv =0

 To computethe eigenvalues, we must solve the linear system
det(A —AI) =0

15.01.2019 50

, Latent Semantic Indexing

e Intuitive Idea of LSI:

— The intuition of LSl is that SVD rotates the axes of
n-dimensional space of A such that

* The first axis runs along the largest variation (variance)
of terms among the documents

* The second axis runs along the second largest variation
(variance) of term

e Andso on

X

15.01.2019 51

* This course presented:

— IR architecture

— IR query types

— Document representation
— Weighting schemas

— Text preprocessing

— Inverted Indexes

— LSI

15.01.2019 52

 [Liu 2011] Bing Liu: Web Data Mining,
Exploring Hyperlinks, Contents, and Usage
Data, 2011

15.01.2019 53

