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• This is a probabilistic classifier

• The algorithm is based on the Bayes 
theorem

• The probability of each element of the 
dataset to belong to a class is computed
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• Given a dataset of 𝑛 elements 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛
• Each element from 𝑋 is described by 𝑚 attributes 𝐴 =

𝐴1, 𝐴2, … , 𝐴𝑚 . In other words, 𝑥𝑖 = {𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑚}, 𝑖 =
1, 𝑛.

• And, given a set of 𝑘 classes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}

• The probability of an element 𝑥𝑖 (𝑖 = 1, 𝑛) to belong to a 

class 𝑐𝑗(𝑗 = 1, 𝑘)is:

𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖
= 𝑃 𝐶 = 𝑐𝑗 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚

• If classification is needed, the class with the highest 
probability may be assigned to that example
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• The Bayes theorem is:

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 ⋅ 𝑃 𝐴

P 𝐵

• Where 𝑃(𝐴|𝐵) means the probability of 
𝐴 given 𝐵
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• Example:
– Students in a classroom are 60% from the AI M.Sc. module 

and 40% from other modules. 

– 20% of the students are placed in the first 2 rows of seats 
but for AI students this percent is 30%. 

– When the dean enters the class and sits somewhere in the 
first 2 rows, near a student, compute the probability that 
its neighbor is from AI?

• 𝑃(𝐴𝐼) = 0.6

• 𝑃 2 𝑟𝑜𝑤𝑠 𝐴𝐼 = 0.3

• 𝑃 2 𝑟𝑜𝑤𝑠 = 0.2

• 𝑃 𝐴𝐼 2 𝑟𝑜𝑤𝑠 =
𝑃 2 𝑟𝑜𝑤𝑠|𝐴𝐼 ⋅𝑃 𝐴𝐼

𝑃 2 𝑟𝑜𝑤𝑠
=

0.3⋅0.6

0.2
= 0.9



Naïve Bayes Classifier

07.03.2019 8

• Building the classifier

• The objective is to compute 

𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖 =

𝑃 𝐶 = 𝑐𝑗 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚

• By applying the theorem

𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖 =
𝑃 𝑥 = 𝑥𝑖 𝐶 = 𝑐𝑗 ) ⋅ 𝑃(𝐶 = 𝑐𝑗)

𝑃(𝑥 = 𝑥𝑖)

=
𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗 ) ⋅ 𝑃(𝐶 = 𝑐𝑗)

𝑃(𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚)

=
𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗 ) ⋅ 𝑃(𝐶 = 𝑐𝑗)

 𝛽=1
𝑘 𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝛽 ⋅ 𝑃 𝐶 = 𝑐𝛽
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• Making the following assumption: “all attributes are 
conditionally independent given the class 𝐶 = 𝑐𝑗” then:
𝑃 𝑥 = 𝑥𝑖 𝐶 = 𝑐𝑗 = 𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗 )

= 𝑃 𝐴1 = 𝑎𝑖1 𝐶 = 𝑐𝑗 ⋅ 𝑃 𝐴2 = 𝑎𝑖2 𝐶 = 𝑐𝑗 ⋅ … ⋅ 𝑃 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗

=  

𝛼=1

𝑚

𝑃(𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝑗)

• Because of this assumption the method is called “naïve”. 

• Not in all situations the assumption is valid. 

• The practice shows that the results obtained using this 
simplifying assumption are good enough in most of the cases.
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• Finally, replacing in the above expression we obtain:
𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖

=
𝑃 𝐶 = 𝑐𝑗 ⋅  𝛼=1

𝑚 𝑃(𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝑗)

 𝛽=1
𝑘 𝑃 𝐶 = 𝐶𝛽 ⋅  𝛼=1

𝑚 𝑃(𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝛽)

• All probabilities in the above expression may be 
obtained by counting.
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• When only classification is needed, the denominator of the 
above expression may be ignored (is the same for all cj) and 
the labeling class is obtained by maximizing the numerator:

𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗𝑃 𝐶 = 𝑐𝑗 ⋅ 
𝛼=1

𝑚

𝑃 𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝑗
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• Consider a simplified version of the Play Tennis table

Outlook Wind Play Tennis 

Overcast Weak Yes 

Overcast Strong No 

Overcast Absent No 

Sunny Weak Yes 

Sunny Strong No 

Rain Strong No 

Rain Weak No 

Rain Absent No 
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• If the test example is:

Sunny Absent ??? 

 

P(Yes) = 2/8 P(No) = 6/8

P(Overcast | C = Yes) = 1/2 P(Overcast | C = No) = 2/6

P(Weak | C = Yes) = 2/2 P(Weak | C = No) = 1/6

P(Sunny | C = Yes) = 1/2 P(Sunny  | C = No) = 1/6

P(Strong| C = Yes) = 0/2 P(Strong| C = No) = 3/6

P(Rain | C = Yes) = 0/2 P(Rain  | C = No) = 3/6

P(Absent| C = Yes) = 0/2 P(Absent| C = No) = 2/6
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• For 𝐶 = 𝑌𝑒𝑠

𝑃 𝑌𝑒𝑠 ∗ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑌𝑒𝑠 ∗ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑌𝑒𝑠 =
2

8
⋅
1

2
⋅
0

2
= 0

• For 𝐶 = 𝑁𝑜

𝑃 𝑁𝑜 ⋅ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑁𝑜 ⋅ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑁𝑜 =
6

8
⋅
1

6
⋅
2

6
=

1

24
• The result is No (not a very wise result!)
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• Sometimes a class does not occur with a specific attribute value.

• This is problematic because it will result in a 𝑃(𝐴𝑖 = 𝑎𝑖 | 𝐶 = 𝑐𝑗) = 0

probability, which wipes out all the other probabilities

• For avoiding this situation, the smoothing is used and all the product 
terms are greater than zero 

• The smooth equation is:

𝑃 𝐴𝑖 = 𝑎𝑖 𝐶 = 𝑐𝑗) =
𝑎 + 𝑠

𝑏 + 𝑠 ⋅ 𝑟
• Where

– 𝑎 is the number of training examples with 𝐴𝑖 = 𝑎𝑖 and 𝐶 = 𝑐𝑗

– 𝑠 is a multiplicative factor, commonly set to 𝑠 =
1

𝑛
, where 𝑛 is the number of 

examples in the training set

– 𝑏 is the number of training examples with 𝐶 = 𝑐𝑗

– 𝑟 is the number of distinct values for attribute 𝐴𝑖
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• 𝑠 =
1

8

• For attribute Outlook 𝑟𝑜𝑢𝑡𝑙𝑜𝑜𝑘 = 3

• For attribute Wind 𝑟𝑤𝑖𝑛𝑑 = 3

• For 𝐶 = 𝑌𝑒𝑠

𝑃 𝑌𝑒𝑠 ∗ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑌𝑒𝑠 ∗ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑌𝑒𝑠 =
2

8
⋅
1

2
⋅

0 +
1
8

2 +
1
8 ⋅ 3

=
1

152

• For 𝐶 = 𝑁𝑜

𝑃 𝑁𝑜 ⋅ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑁𝑜 ⋅ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑁𝑜 =
6

8
⋅
1

6
⋅
2

6
=

1

24
• The result is No
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• If examples have missing values for attributes:

– Ignore them

– Replace them

• If the values for attributes are numerical:

– Use discretization to make all the values categorical

– Use Gaussian Naïve Bayes 
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• When dealing with continuous data, a typical assumption is 
that the continuous values associated with each class are 
distributed according to a Gaussian distribution. (Wikipedia)

• Segment the data by each class 𝑐𝑗

• Compute for each continuous attributes 𝐴𝑖 in class 𝑐𝑗 its mean 

(𝜇𝐴𝑖|𝑐𝑗) and its variance 𝜎𝐴𝑖|𝑐𝑗
2

• For some observations 𝑉, the probability distribution of 
attribute Ai = 𝑣 given a class 𝑐𝑗 is:

𝑃 𝐴𝑖 = 𝑣 𝐶 = 𝑐𝑗 =
1

2 ⋅ 𝜋 ⋅ 𝜎𝐴𝑖|𝑐𝑗
2

𝑒
−

𝑣−𝜇𝐴𝑖|𝑐𝑗

2

2⋅𝜎𝐴𝑖|𝑐𝑗
2
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• In this course is presented only the general idea of the 
Support Vector Machines (SVM) classification method. 

• SVMs are described in detail in many articles and books, for 
example [Liu 2011] or [Han 2006].

• The method was discovered in the Soviet Union in '70 by 
Vladimir Vapnik and was developed in USA after Vapnik joined 
AT&T Bell Labs in early '90 (see [Cortes 1995]). 
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• Given a training datasetLabeled Dataset 𝐷 =

𝑥1, 𝑦1𝑗 , 𝑥2, 𝑦2𝑗 , … , 𝑥𝑛, 𝑦𝑛𝑗 , where

– 𝑥𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑚) is a vector in the 𝑅𝑚 (all 
𝑎𝑖𝑘 components are real numbers)

– 𝑦𝑖𝑗 is the class label, 𝐶 = {−1,+1}. If 𝑥𝑖 is labeled 

with +1 then it belongs to the positive class, 
otherwise to the negative class
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• A possible classifier is a linear function :
𝑓 𝑥 =< 𝑤 ⋅ 𝑥 > + 𝑏
𝑦𝑖 =< 𝑤 ⋅ 𝑥𝑖 > + 𝑏

• For example:

𝑦𝑖 =  
1 𝑖𝑓 < 𝑤 ⋅ 𝑥𝑖 > +𝑏 ≥ 0
−1 𝑖𝑓 < 𝑤 ⋅ 𝑥𝑖 > +𝑏 < 0

• Where 
– 𝑤 is a weight vector

– < 𝑤 ⋅ 𝑥 > is the dot product of vectors 𝒘 and 𝒙

– 𝒃 is a real number

– 𝒘 and 𝒃 may be scaled.
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• The meaning of 𝒇 is that the hyperplane < 𝑤 ⋅ 𝑥 >
+ 𝑏 = 0 separates the points of the training set D in 
two: 

– one half of the space contains the positive values 
and

– the other half the negative values in D (like 
hyperplanes 𝐻1 and 𝐻2 in the next figure).

• All test examples can now be classified using 𝑓: the 
value of 𝑓 gives the label for the example.
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• Source Wikipedia
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• SVM tries to find the ‘best’ hyperplane of that 
form. 

• The theory shows that the best plane is the 
one maximizing the so-called margin (the 
minimum orthogonal distance between a 
positive and negative point from the training 
set – see next figure for an example.
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• Source Wikipedia
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• Consider 𝑋+and 𝑋− the nearest positive and negative points 
for the hyperplane   

< 𝑤 ⋅ 𝑋 > + 𝑏 = 0

• Then there are two other parallel hyperplanes, 𝐻+ and 𝐻−

passing through 𝑋+ and 𝑋− and their expression is:

𝐻+: < 𝑤 ⋅ 𝑋 > + 𝑏 = 1

𝐻−: < 𝑤 ⋅ 𝑋 > + 𝑏 = −1

• Note that w and b must be scaled such as:
< 𝑤 ⋅ 𝑋 > + 𝑏 = 1 𝑓𝑜𝑟 𝑦𝑖 = 1

< 𝑤 ⋅ 𝑋 > + 𝑏 = −1 𝑓𝑜𝑟 𝑦𝑖 = −1
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• The margin is the distance between these two planes and may 
be computed using vector space algebra obtaining:

𝑀𝑎𝑟𝑔𝑖𝑛 =
2

| 𝑤 |

• Maximizing the margin means minimizing the value of

< 𝑤 ⋅ 𝑤 >

2
=

𝑤
2

2

• The points X+ and X− are called support vectors and are the 
only important points from the dataset
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• When positive and negative points are linearly separable, the 
SVM definition is the following:

– Having a training data set 𝐷 = 𝑥1, 𝑦1𝑗 , 𝑥2, 𝑦2𝑗 , … , 𝑥𝑛 , 𝑦𝑛𝑗

– Minimize the value of 
<𝑤⋅𝑤>

2

– With restriction: 𝑦𝑖 (=< 𝑤 ⋅ 𝑥𝑖 > +𝑏)  1, knowing the value of 𝑦𝑖 =
{−1, 1}

• This optimization problem is solvable by rewriting the above 
inequality using a Lagrangian formulation and then finding 
solution using Karush-Kuhn-Tucker (KKT) conditions. 

• This mathematical approach is beyond the scope of this 
course.
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• In many situations there is no hyperplane for separation 
between the positive and negative examples. 

• In such cases there is possible to map the training data 
points (examples) in another space, a higher dimensional 
one. 

• Here data points may be linearly separable. 

• The mapping function gets examples (vectors) from the 
input space 𝑋 and maps them in the so-called feature 
space 𝐹:

𝜙:𝑋 → 𝐹



SVN – Non-Linear

07.03.2019 32

• Each point 𝑥 is mapped in 𝜙(𝑥). 

• After mapping the whole dataset 𝐷, there is another 
training set, containing vectors from 𝐹 and not from 
𝑋, with dim 𝐹  𝑛 = dim(𝑋):

𝐷 = 𝜙(𝑥1), 𝑦1𝑗 , 𝜙(𝑥2), 𝑦2𝑗 , … , 𝜙(𝑥𝑛), 𝑦𝑛𝑗

• For an appropriate 𝜙, these points are linearly 
separable. 
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• Source Wikipedia
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• But how can we find this mapping function? 

• In solving the optimization problem for finding the linear separation 
hyperplane in the new feature space 𝐹, all terms containing training 

examples are only of the form 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑗

• By replacing this dot product with a function in both 𝑥𝑖 and 𝑥𝑗 the 

need for finding 𝜙 disappears. 

• Such a function is called a kernel function:

𝐾 𝑥𝑖, 𝑥𝑗 = 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑗

• For finding the separation hyperplane in 𝐹 we must only replace all 
dot products with the chosen kernel function and then proceed 
with the optimization problem like in separable case. 
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• Some of the most used kernel functions are:

– Linear kernel:
𝐾 𝑣, 𝑢 = < 𝑢 ⋅ 𝑣 > +𝑏

– Polynomial Kernel:
𝐾 𝑣, 𝑢 = 𝑎 ⋅< 𝑢 ⋅ 𝑣 > +𝑏 𝑝

– Sigmoid Kernel (tanh - Hyperbolic tangent):
𝐾 𝑣, 𝑢 = tanh 𝑎 ⋅< 𝑢 ⋅ 𝑣 > +𝑏



SVM

07.03.2019 36

• SVM deals with continuous real values for attributes. 

– When categorical attributes exists in the training data a 
conversion to real values is needed.

• When more than two classes are needed SVM can be 
used recursively. 

– First use separates one class; the second use separates the 
second class and so on. For N classes N-1 runs are needed.

• SVM are a very good method in hyper dimensional 
data classification.
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• K-nearest neighbor
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• K-Nearest Neighbor (kNN) does not produce a model 
but is a simple method for determining the class of 
an example based on the labels of its neighbors 
belonging to the training set. 

• For running the algorithm a distance function is 
needed for computing the distance from the test 
example to the examples in the training set.

• A function 𝑓(𝑥, 𝑦) may be used as distance function 
if four conditions are met:
– 𝑓 𝑥, 𝑦 ≥ 0
– 𝑓 𝑥, 𝑥 = 0
– 𝑓 𝑥, 𝑦 = 𝑓 𝑦, 𝑥
– 𝑓 𝑥, 𝑦 ≤ 𝑓 𝑥, 𝑧 + 𝑓(𝑧, 𝑦)
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• Input:
– A labeled dataset 𝐷 = { 𝑥1, 𝑐1𝑖 , 𝑥2, 𝑐2𝑖 , … , (𝑥𝑛, 𝑐𝑛𝑖)} (training set) 

with 𝑛 observations. 

– A distance function 𝑓 for measuring the dissimilarity between two 
examples

– An integer 𝑘 telling how many neighbors are considered

– A dataset for testing the algorithm 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}

• Output
– The classes for the observations in 𝑇

• Method
– Use 𝑓 to compute the distance between each point in 𝑇 and each 

point in 𝐷

– Select nearest 𝑘 points 

– Assign to each 𝑡𝑖 the class from the set of 𝑘 nearest neighbor
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• Example: get the class of the green point (Red or Blue)

• 𝑘 = 3 then its class is Red

• 𝑘 = 5 then its class is Blue

• kNN is very sensitive to the value of parameter 𝑘

• The best 𝑘 can be determined using cross validation



K-Nearest Neighbor

07.03.2019 41

• Distance functions for kNN for continuous variables:

• Euclidian distance

𝑓 𝑥, 𝑦 =  
𝑖=1

𝑘

𝑥𝑖 − 𝑦𝑖 2

• Manhattan distance

𝑓 𝑥, 𝑦 =  
𝑖=1

𝑘

|𝑥𝑖 − 𝑦𝑖|

• Minkowski

𝑓 𝑥, 𝑦 =  
𝑖=1

𝑘

𝑥𝑖 − 𝑦𝑖
𝑞

1
𝑞
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• Ensemble methods combine multiple classifiers to 
obtain a better one

• Combined classifiers are similar (use the same 
learning method) but the training datasets or the 
weights’ examples  are different

• Bagging (Bootstrap Aggregating) 

• Boosting



Ensemble Methods
- Bootstrap -
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• Bootstrap uses statistical methods (e.g. mean and 
standard deviation) for estimating a quantity from a 
data sample

• Given a sample of 𝑛 values 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} it’s 

mean is:  𝑥 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖

• If 𝑛 is small then the sample mean has an error

• The estimate of the mean can be improved by using 
bootstrap



Ensemble Methods
- Bootstrap -
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• Bootstrap steps:

1. Create multiple random sub-samples of the initial sample 
with replacement (meaning the same value can be 
selected multiple times): 𝑥1, 𝑥2, … , 𝑥𝑚

2. Calculate the mean for each subsample: 𝑥1, 𝑥2, … , 𝑥𝑚

3. Calculate the average of all the sub-samples means and 
use it as the estimated mean for the initial sample: 
1

𝑚
 𝑗=1
𝑚 𝑥𝑗



Ensemble Methods
- Bagging -
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• Bagging ([Breiman 1996]) is a machine learning 
ensemble algorithm designed to improve the stability 
and accuracy of machine learning.

• Bagging reduces the variance and helps to avoid 
overfitting.

• Bagging consists in getting a training set from the 
initial labeled data set by sampling with replacement



Ensemble Methods
- Bagging -
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• Bagging consists in:

– Starting with the original dataset, build 𝒏 training datasets 
by sampling with replacement (bootstrap samples)

– For each training dataset build a classifier using the same 
learning algorithm.

– The final classifier is obtained by combining the results of 
each classifiers (by voting for example).

– Bagging helps to improve the accuracy for unstable 
learning algorithms: decision trees, neural networks. 

• It does not help for kNN, Naïve Bayesian 
classification or CARs.
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- Bagging -
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• Bagging is an application of the Bootstrap procedure to a 
high-variance machine learning algorithm, typically 
decision trees

• Bagging steps:
1. Create many random sub-samples of your dataset with replacement

2. Train the classifier on each sample

3. Given a new dataset, calculate the average prediction for each model

• For example: we have 5 bagged decision trees 
(CART) that made the following class predictions for 
a in input sample: blue, blue, red, blue and red, we 
would take the most frequent class and predict 
blue.



Ensemble Methods
- Random Forest -
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• Random Forest [Ho 1995, Ho 1998, Breiman 2001] is 
an ensemble classifier consisting in a set of decision 
trees.

• The final classifier output the modal value of the 
classes output by each tree.

• Random Forests are an improvement over bagged 
decision trees.



Ensemble Methods
- Random Forest -
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• A problem with decision trees like CART is that 
they are greedy. 

• They choose which variable to split on using a 
greedy algorithm that minimizes error. 

• As such, even with Bagging, the decision trees 
can have a lot of structural similarities and in 
turn have high correlation in their predictions.



Ensemble Methods
- Random Forest -
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• Combining predictions from multiple models 
in ensembles works better if the predictions 
from the sub-models are uncorrelated or at 
best weakly correlated.

• Random forest changes the algorithm for the 
way that the sub-trees are learned so that the 
resulting predictions from all of the subtrees 
have less correlation.



Ensemble Methods
- Random Forest -
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• It is a simple tweak. In CART, when selecting a 
split point, the learning algorithm is allowed 
to look through all variables and all variable 
values in order to select the most optimal 
split-point. 

• The Random Forest algorithm changes this 
procedure so that the learning algorithm is 
limited to a random sample of features of 
which to search.



Ensemble Methods
- Random Forest -
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• The number of features that can be searched at each split 
point (𝑚) must be specified as a parameter to the algorithm. 

• You can try different values and tune it using cross validation.

• The values determined experimentally are:

– For classification a good default is: 𝑚 = 𝑝

– For regression a good default is: 𝑚 =
𝑝

3

– Where:

• 𝑚 is the number of randomly selected features that can be 
searched at a split point 

• 𝑝 is the number of input variables
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- Random Forest -
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• Random Forest algorithm:

1. Choose T - number of trees to grow.

2. Choose m - number of variables used to split each node. 
m  M, where M is the number of input variables.

3. Grow T trees. When growing each tree do the following:
I. Construct a bootstrap sample from training data with 

replacement and grow a tree from this bootstrap sample.

II. When growing a tree at each node select m variables at random 
and use them to find the best split.

III. Grow the tree to a maximal extent. There is no pruning. 

4. Predict new data by aggregating the predictions of the 
trees (e.g. majority votes for classification, average for 
regression).



Ensemble Methods
- Extremely Randomized Trees -
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• Extremely Randomized Trees add an other step of 
randomization.

• They are trained using bagging like random forest but the 
top-down splitting for each tree is randomized.

• This means that instead of computing the best attribute 
for the split using a function (e.g. information gain) a 
random value is selected for the split.

• This value is selected from the feature's empirical 
range
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- Boosting -
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• Boosting consists in building a sequence of weak 
classifiers and adding them in the structure of the 
final strong classifier. 

• Weak learner (classifier) – a classification algorithm 
with a substantial error rate which performance is 
not random.

• In other words, a weak leaner has an accuracy only 
slightly better than using random guessing



Ensemble Methods
- Boosting -
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• The weak classifiers are weighted based on the weak 
learners' accuracy. 

• Also data is reweighted after each weak classifier is 
built such as examples that are incorrectly classified 
gain some extra weight. 

• The result is that the next weak classifiers in the 
sequence focus more on the examples that previous 
weak classifiers missed



Ensemble Methods
- AdaBoost -
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• AdaBoost [Freund 1997] (Adaptive Boosting) uses weak 
learners output and combine it into a weighted sum that 
represents the final output of the classifier 

• Construct a strong classifier as a linear combination of 
week classifiers



Ensemble Methods
- AdaBoost -
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• Advantages:

– It helps you choose the training set for each new 
classifier that you train based on the results of the 
previous classifier.

– It determines how much weight should be given 
to each classifier’s proposed answer when 
combining the results.



Ensemble Methods
- AdaBoost -
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• AdaBoost assigns a “weight” to each training 
example, which determines the probability 
that each example should appear in the 
training set [Akerkar 2016] . 

• Examples with higher weights are more likely 
to be included in the training set, and vice 
versa [Akerkar 2016] . 



Ensemble Methods
- AdaBoost -
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• After training a classifier, AdaBoost increases 
the weight on the misclassified examples so 
that these examples will make up a larger part 
of the next classifiers training set, and 
hopefully the next classifier trained will 
perform better on them [Akerkar 2016].
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• AdaBoost algorithm:

1. Input: 
– A training dataset 𝐷 = { 𝑥1, 𝑦1𝑖 , 𝑥2, 𝑦2𝑖 , … , (𝑥𝑛, 𝑦𝑛𝑖)} (training set) with 𝑛

observations

• 𝑥𝑖 = {𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑚} is a an observation with 𝑚 attributes 𝐴 =
𝑎1, 𝑎2, … , 𝑎𝑚

• 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑘} is a set of 𝑘 classes, and 𝑦𝑗 is a class label

– The maximum number of iterations 𝑇

– A classifier 𝐶

2. Initialization:
– Initialize the weight distribution 𝛿1(𝑤𝑖) =

1

𝑛
for 𝑖 = 1, 𝑛

– Now, the data set is 𝐷1 = { 𝑥1, 𝑦1𝑖 , 𝑤1 , 𝑥2, 𝑦2𝑖 , 𝑤2 , … , (𝑥𝑛, 𝑦𝑛𝑖 , 𝑤𝑛)}

– The  𝑖=1
𝑛 𝑤𝑖 = 1
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- AdaBoost -
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• AdaBoost algorithm [Freund 1996, Liu]:

3. For 𝑡 ∈ {1, 2, … , 𝑇} do
– Train classifier  𝐶𝑡 (ℎ𝑡: 𝑅

𝑚 → 𝑌 ) using the weight distribution 𝛿𝑡(𝑤𝑖)

– Get the training error 𝜖𝑡 for classifier 𝐶𝑡(𝑜𝑟 ℎ𝑡) measured by using 𝛿𝑡 𝑤𝑖

– Compute 𝜖𝑡 =  𝑖=1
𝑛 𝛿𝑡 𝑤𝑖 only for ℎ𝑡 𝑥𝑖 ≠ 𝑦𝑖

– If 𝜖𝑡 >
1

2
then 𝑇 = 𝑡 − 1 and exit loop

– Else

• Compute the output weight 𝛽𝑡 =
1−𝜖𝑡

𝜖𝑡

• Update the weight distribution 𝛿𝑡+1 𝑤𝑖 = 𝛿𝑡(𝑤𝑖) ⋅  
𝛽𝑡 𝑖𝑓 ℎ𝑡 𝑥𝑖 = 𝑦𝑖
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Normalization the weights 𝛿𝑡+1 𝑤𝑖 =
𝛿𝑡+1(𝑤𝑖)

 𝑖=1
𝑛 𝛿𝑡+1 𝑤𝑖

4. Output: 

– the strong classifier is 𝐻 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖∈𝑌
 𝑡=1
𝑇 log

1

𝛽𝑡
for ℎ𝑡 𝑥 = 𝑦𝑖
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• This course presented:
– Naïve Bayes classifier: Bayes theorem, Naïve Bayes 

algorithm for building classifiers, Gaussian Naïve Bayes.

– An introduction to support vector machines (SVMs): 
model, definition, kernel functions.

– K-nearest neighbor

– Ensemble methods
• Bootstrap

• Bagging 

• Random Forest

• Extremely Randomized Trees

• Boosting

• AdaBoost
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