
Faculty of

Automatic

Control and
Computers

Computer

Science and

Engineering
Department

Supervised Leaning

Ciprian-Octavian Truică

ciprian.truica@cs.pub.ro

University

Politehnica
of Bucharest

mailto:ciprian.truica@cs.pub.ro

Overview

07.03.2019 2

• Naïve Bayes

• Support Vector Machines

• K-nearest neighbor

• Ensemble methods

Overview

07.03.2019 3

• Naïve Bayes

• Support Vector Machines

• K-nearest neighbor

• Ensemble methods

Naïve Bayes Classifier

07.03.2019 4

• This is a probabilistic classifier

• The algorithm is based on the Bayes
theorem

• The probability of each element of the
dataset to belong to a class is computed

Naïve Bayes Classifier

07.03.2019 5

• Given a dataset of 𝑛 elements 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛
• Each element from 𝑋 is described by 𝑚 attributes 𝐴 =

𝐴1, 𝐴2, … , 𝐴𝑚 . In other words, 𝑥𝑖 = {𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑚}, 𝑖 =
1, 𝑛.

• And, given a set of 𝑘 classes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}

• The probability of an element 𝑥𝑖 (𝑖 = 1, 𝑛) to belong to a

class 𝑐𝑗(𝑗 = 1, 𝑘)is:

𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖
= 𝑃 𝐶 = 𝑐𝑗 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚

• If classification is needed, the class with the highest
probability may be assigned to that example

Naïve Bayes Classifier

07.03.2019 6

• The Bayes theorem is:

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 ⋅ 𝑃 𝐴

P 𝐵

• Where 𝑃(𝐴|𝐵) means the probability of
𝐴 given 𝐵

Naïve Bayes Classifier

07.03.2019 7

• Example:
– Students in a classroom are 60% from the AI M.Sc. module

and 40% from other modules.

– 20% of the students are placed in the first 2 rows of seats
but for AI students this percent is 30%.

– When the dean enters the class and sits somewhere in the
first 2 rows, near a student, compute the probability that
its neighbor is from AI?

• 𝑃(𝐴𝐼) = 0.6

• 𝑃 2 𝑟𝑜𝑤𝑠 𝐴𝐼 = 0.3

• 𝑃 2 𝑟𝑜𝑤𝑠 = 0.2

• 𝑃 𝐴𝐼 2 𝑟𝑜𝑤𝑠 =
𝑃 2 𝑟𝑜𝑤𝑠|𝐴𝐼 ⋅𝑃 𝐴𝐼

𝑃 2 𝑟𝑜𝑤𝑠
=

0.3⋅0.6

0.2
= 0.9

Naïve Bayes Classifier

07.03.2019 8

• Building the classifier

• The objective is to compute

𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖 =

𝑃 𝐶 = 𝑐𝑗 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚

• By applying the theorem

𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖 =
𝑃 𝑥 = 𝑥𝑖 𝐶 = 𝑐𝑗) ⋅ 𝑃(𝐶 = 𝑐𝑗)

𝑃(𝑥 = 𝑥𝑖)

=
𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗) ⋅ 𝑃(𝐶 = 𝑐𝑗)

𝑃(𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚)

=
𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗) ⋅ 𝑃(𝐶 = 𝑐𝑗)

 𝛽=1
𝑘 𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝛽 ⋅ 𝑃 𝐶 = 𝑐𝛽

Naïve Bayes Classifier

07.03.2019 9

• Making the following assumption: “all attributes are
conditionally independent given the class 𝐶 = 𝑐𝑗” then:
𝑃 𝑥 = 𝑥𝑖 𝐶 = 𝑐𝑗 = 𝑃 𝐴1 = 𝑎𝑖1, 𝐴2 = 𝑎𝑖2, … , 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗)

= 𝑃 𝐴1 = 𝑎𝑖1 𝐶 = 𝑐𝑗 ⋅ 𝑃 𝐴2 = 𝑎𝑖2 𝐶 = 𝑐𝑗 ⋅ … ⋅ 𝑃 𝐴𝑚 = 𝑎𝑖𝑚 𝐶 = 𝑐𝑗

=

𝛼=1

𝑚

𝑃(𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝑗)

• Because of this assumption the method is called “naïve”.

• Not in all situations the assumption is valid.

• The practice shows that the results obtained using this
simplifying assumption are good enough in most of the cases.

Naïve Bayes Classifier

07.03.2019 10

• Finally, replacing in the above expression we obtain:
𝑃 𝐶 = 𝑐𝑗 𝑥 = 𝑥𝑖

=
𝑃 𝐶 = 𝑐𝑗 ⋅ 𝛼=1

𝑚 𝑃(𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝑗)

 𝛽=1
𝑘 𝑃 𝐶 = 𝐶𝛽 ⋅ 𝛼=1

𝑚 𝑃(𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝛽)

• All probabilities in the above expression may be
obtained by counting.

Naïve Bayes Classifier

07.03.2019 11

• When only classification is needed, the denominator of the
above expression may be ignored (is the same for all cj) and
the labeling class is obtained by maximizing the numerator:

𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗𝑃 𝐶 = 𝑐𝑗 ⋅
𝛼=1

𝑚

𝑃 𝐴𝛼 = 𝑎𝛼|𝐶 = 𝑐𝑗

Naïve Bayes Classifier

07.03.2019 12

• Consider a simplified version of the Play Tennis table

Outlook Wind Play Tennis

Overcast Weak Yes

Overcast Strong No

Overcast Absent No

Sunny Weak Yes

Sunny Strong No

Rain Strong No

Rain Weak No

Rain Absent No

Naïve Bayes Classifier

07.03.2019 13

• If the test example is:

Sunny Absent ???

P(Yes) = 2/8 P(No) = 6/8

P(Overcast | C = Yes) = 1/2 P(Overcast | C = No) = 2/6

P(Weak | C = Yes) = 2/2 P(Weak | C = No) = 1/6

P(Sunny | C = Yes) = 1/2 P(Sunny | C = No) = 1/6

P(Strong| C = Yes) = 0/2 P(Strong| C = No) = 3/6

P(Rain | C = Yes) = 0/2 P(Rain | C = No) = 3/6

P(Absent| C = Yes) = 0/2 P(Absent| C = No) = 2/6

Naïve Bayes Classifier

07.03.2019 14

• For 𝐶 = 𝑌𝑒𝑠

𝑃 𝑌𝑒𝑠 ∗ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑌𝑒𝑠 ∗ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑌𝑒𝑠 =
2

8
⋅
1

2
⋅
0

2
= 0

• For 𝐶 = 𝑁𝑜

𝑃 𝑁𝑜 ⋅ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑁𝑜 ⋅ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑁𝑜 =
6

8
⋅
1

6
⋅
2

6
=

1

24
• The result is No (not a very wise result!)

Naïve Bayes Classifier

07.03.2019 15

• Sometimes a class does not occur with a specific attribute value.

• This is problematic because it will result in a 𝑃(𝐴𝑖 = 𝑎𝑖 | 𝐶 = 𝑐𝑗) = 0

probability, which wipes out all the other probabilities

• For avoiding this situation, the smoothing is used and all the product
terms are greater than zero

• The smooth equation is:

𝑃 𝐴𝑖 = 𝑎𝑖 𝐶 = 𝑐𝑗) =
𝑎 + 𝑠

𝑏 + 𝑠 ⋅ 𝑟
• Where

– 𝑎 is the number of training examples with 𝐴𝑖 = 𝑎𝑖 and 𝐶 = 𝑐𝑗

– 𝑠 is a multiplicative factor, commonly set to 𝑠 =
1

𝑛
, where 𝑛 is the number of

examples in the training set

– 𝑏 is the number of training examples with 𝐶 = 𝑐𝑗

– 𝑟 is the number of distinct values for attribute 𝐴𝑖

Naïve Bayes Classifier

07.03.2019 16

• 𝑠 =
1

8

• For attribute Outlook 𝑟𝑜𝑢𝑡𝑙𝑜𝑜𝑘 = 3

• For attribute Wind 𝑟𝑤𝑖𝑛𝑑 = 3

• For 𝐶 = 𝑌𝑒𝑠

𝑃 𝑌𝑒𝑠 ∗ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑌𝑒𝑠 ∗ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑌𝑒𝑠 =
2

8
⋅
1

2
⋅

0 +
1
8

2 +
1
8 ⋅ 3

=
1

152

• For 𝐶 = 𝑁𝑜

𝑃 𝑁𝑜 ⋅ 𝑃 𝑆𝑢𝑛𝑛𝑦 𝑁𝑜 ⋅ 𝑃 𝐴𝑏𝑠𝑒𝑛𝑡 𝑁𝑜 =
6

8
⋅
1

6
⋅
2

6
=

1

24
• The result is No

Naïve Bayes Classifier

07.03.2019 17

• If examples have missing values for attributes:

– Ignore them

– Replace them

• If the values for attributes are numerical:

– Use discretization to make all the values categorical

– Use Gaussian Naïve Bayes

Gaussian Naïve Bayes Classifier

07.03.2019 18

• When dealing with continuous data, a typical assumption is
that the continuous values associated with each class are
distributed according to a Gaussian distribution. (Wikipedia)

• Segment the data by each class 𝑐𝑗

• Compute for each continuous attributes 𝐴𝑖 in class 𝑐𝑗 its mean

(𝜇𝐴𝑖|𝑐𝑗) and its variance 𝜎𝐴𝑖|𝑐𝑗
2

• For some observations 𝑉, the probability distribution of
attribute Ai = 𝑣 given a class 𝑐𝑗 is:

𝑃 𝐴𝑖 = 𝑣 𝐶 = 𝑐𝑗 =
1

2 ⋅ 𝜋 ⋅ 𝜎𝐴𝑖|𝑐𝑗
2

𝑒
−

𝑣−𝜇𝐴𝑖|𝑐𝑗

2

2⋅𝜎𝐴𝑖|𝑐𝑗
2

Overview

07.03.2019 19

• Naïve Bayes

• Support Vector Machines

• K-nearest neighbor

• Ensemble methods

Support Vector Machines

07.03.2019 20

• In this course is presented only the general idea of the
Support Vector Machines (SVM) classification method.

• SVMs are described in detail in many articles and books, for
example [Liu 2011] or [Han 2006].

• The method was discovered in the Soviet Union in '70 by
Vladimir Vapnik and was developed in USA after Vapnik joined
AT&T Bell Labs in early '90 (see [Cortes 1995]).

SVM

07.03.2019 21

• Given a training datasetLabeled Dataset 𝐷 =

𝑥1, 𝑦1𝑗 , 𝑥2, 𝑦2𝑗 , … , 𝑥𝑛, 𝑦𝑛𝑗 , where

– 𝑥𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑚) is a vector in the 𝑅𝑚 (all
𝑎𝑖𝑘 components are real numbers)

– 𝑦𝑖𝑗 is the class label, 𝐶 = {−1,+1}. If 𝑥𝑖 is labeled

with +1 then it belongs to the positive class,
otherwise to the negative class

SVM – Linear

07.03.2019 22

• A possible classifier is a linear function :
𝑓 𝑥 =< 𝑤 ⋅ 𝑥 > + 𝑏
𝑦𝑖 =< 𝑤 ⋅ 𝑥𝑖 > + 𝑏

• For example:

𝑦𝑖 =
1 𝑖𝑓 < 𝑤 ⋅ 𝑥𝑖 > +𝑏 ≥ 0
−1 𝑖𝑓 < 𝑤 ⋅ 𝑥𝑖 > +𝑏 < 0

• Where
– 𝑤 is a weight vector

– < 𝑤 ⋅ 𝑥 > is the dot product of vectors 𝒘 and 𝒙

– 𝒃 is a real number

– 𝒘 and 𝒃 may be scaled.

SVM – Linear

07.03.2019 23

• The meaning of 𝒇 is that the hyperplane < 𝑤 ⋅ 𝑥 >
+ 𝑏 = 0 separates the points of the training set D in
two:

– one half of the space contains the positive values
and

– the other half the negative values in D (like
hyperplanes 𝐻1 and 𝐻2 in the next figure).

• All test examples can now be classified using 𝑓: the
value of 𝑓 gives the label for the example.

SVM – Linear

07.03.2019 24

• Source Wikipedia

SVM – Linear

07.03.2019 25

• SVM tries to find the ‘best’ hyperplane of that
form.

• The theory shows that the best plane is the
one maximizing the so-called margin (the
minimum orthogonal distance between a
positive and negative point from the training
set – see next figure for an example.

SVM – Linear

07.03.2019 26

• Source Wikipedia

SVM – Linear

07.03.2019 27

• Consider 𝑋+and 𝑋− the nearest positive and negative points
for the hyperplane

< 𝑤 ⋅ 𝑋 > + 𝑏 = 0

• Then there are two other parallel hyperplanes, 𝐻+ and 𝐻−

passing through 𝑋+ and 𝑋− and their expression is:

𝐻+: < 𝑤 ⋅ 𝑋 > + 𝑏 = 1

𝐻−: < 𝑤 ⋅ 𝑋 > + 𝑏 = −1

• Note that w and b must be scaled such as:
< 𝑤 ⋅ 𝑋 > + 𝑏 = 1 𝑓𝑜𝑟 𝑦𝑖 = 1

< 𝑤 ⋅ 𝑋 > + 𝑏 = −1 𝑓𝑜𝑟 𝑦𝑖 = −1

SVM – Linear

07.03.2019 28

• The margin is the distance between these two planes and may
be computed using vector space algebra obtaining:

𝑀𝑎𝑟𝑔𝑖𝑛 =
2

| 𝑤 |

• Maximizing the margin means minimizing the value of

< 𝑤 ⋅ 𝑤 >

2
=

𝑤
2

2

• The points X+ and X− are called support vectors and are the
only important points from the dataset

SVM – Linear

07.03.2019 29

SVM – Linear

07.03.2019 30

• When positive and negative points are linearly separable, the
SVM definition is the following:

– Having a training data set 𝐷 = 𝑥1, 𝑦1𝑗 , 𝑥2, 𝑦2𝑗 , … , 𝑥𝑛 , 𝑦𝑛𝑗

– Minimize the value of
<𝑤⋅𝑤>

2

– With restriction: 𝑦𝑖 (=< 𝑤 ⋅ 𝑥𝑖 > +𝑏)  1, knowing the value of 𝑦𝑖 =
{−1, 1}

• This optimization problem is solvable by rewriting the above
inequality using a Lagrangian formulation and then finding
solution using Karush-Kuhn-Tucker (KKT) conditions.

• This mathematical approach is beyond the scope of this
course.

SVM – Non-Linear

07.03.2019 31

• In many situations there is no hyperplane for separation
between the positive and negative examples.

• In such cases there is possible to map the training data
points (examples) in another space, a higher dimensional
one.

• Here data points may be linearly separable.

• The mapping function gets examples (vectors) from the
input space 𝑋 and maps them in the so-called feature
space 𝐹:

𝜙:𝑋 → 𝐹

SVN – Non-Linear

07.03.2019 32

• Each point 𝑥 is mapped in 𝜙(𝑥).

• After mapping the whole dataset 𝐷, there is another
training set, containing vectors from 𝐹 and not from
𝑋, with dim 𝐹  𝑛 = dim(𝑋):

𝐷 = 𝜙(𝑥1), 𝑦1𝑗 , 𝜙(𝑥2), 𝑦2𝑗 , … , 𝜙(𝑥𝑛), 𝑦𝑛𝑗

• For an appropriate 𝜙, these points are linearly
separable.

SVM – Non-Linear

07.03.2019 33

• Source Wikipedia

SVM – Non-Linear

07.03.2019 34

• But how can we find this mapping function?

• In solving the optimization problem for finding the linear separation
hyperplane in the new feature space 𝐹, all terms containing training

examples are only of the form 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑗

• By replacing this dot product with a function in both 𝑥𝑖 and 𝑥𝑗 the

need for finding 𝜙 disappears.

• Such a function is called a kernel function:

𝐾 𝑥𝑖, 𝑥𝑗 = 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑗

• For finding the separation hyperplane in 𝐹 we must only replace all
dot products with the chosen kernel function and then proceed
with the optimization problem like in separable case.

SVM – Non-Linear

07.03.2019 35

• Some of the most used kernel functions are:

– Linear kernel:
𝐾 𝑣, 𝑢 = < 𝑢 ⋅ 𝑣 > +𝑏

– Polynomial Kernel:
𝐾 𝑣, 𝑢 = 𝑎 ⋅< 𝑢 ⋅ 𝑣 > +𝑏 𝑝

– Sigmoid Kernel (tanh - Hyperbolic tangent):
𝐾 𝑣, 𝑢 = tanh 𝑎 ⋅< 𝑢 ⋅ 𝑣 > +𝑏

SVM

07.03.2019 36

• SVM deals with continuous real values for attributes.

– When categorical attributes exists in the training data a
conversion to real values is needed.

• When more than two classes are needed SVM can be
used recursively.

– First use separates one class; the second use separates the
second class and so on. For N classes N-1 runs are needed.

• SVM are a very good method in hyper dimensional
data classification.

Overview

07.03.2019 37

• Naïve Bayes

• Support Vector Machines

• K-nearest neighbor

• Ensemble methods

K-Nearest Neighbor

07.03.2019 38

• K-Nearest Neighbor (kNN) does not produce a model
but is a simple method for determining the class of
an example based on the labels of its neighbors
belonging to the training set.

• For running the algorithm a distance function is
needed for computing the distance from the test
example to the examples in the training set.

• A function 𝑓(𝑥, 𝑦) may be used as distance function
if four conditions are met:
– 𝑓 𝑥, 𝑦 ≥ 0
– 𝑓 𝑥, 𝑥 = 0
– 𝑓 𝑥, 𝑦 = 𝑓 𝑦, 𝑥
– 𝑓 𝑥, 𝑦 ≤ 𝑓 𝑥, 𝑧 + 𝑓(𝑧, 𝑦)

K-Nearest Neighbor

07.03.2019 39

• Input:
– A labeled dataset 𝐷 = { 𝑥1, 𝑐1𝑖 , 𝑥2, 𝑐2𝑖 , … , (𝑥𝑛, 𝑐𝑛𝑖)} (training set)

with 𝑛 observations.

– A distance function 𝑓 for measuring the dissimilarity between two
examples

– An integer 𝑘 telling how many neighbors are considered

– A dataset for testing the algorithm 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}

• Output
– The classes for the observations in 𝑇

• Method
– Use 𝑓 to compute the distance between each point in 𝑇 and each

point in 𝐷

– Select nearest 𝑘 points

– Assign to each 𝑡𝑖 the class from the set of 𝑘 nearest neighbor

K-Nearest Neighbor

07.03.2019 40

• Example: get the class of the green point (Red or Blue)

• 𝑘 = 3 then its class is Red

• 𝑘 = 5 then its class is Blue

• kNN is very sensitive to the value of parameter 𝑘

• The best 𝑘 can be determined using cross validation

K-Nearest Neighbor

07.03.2019 41

• Distance functions for kNN for continuous variables:

• Euclidian distance

𝑓 𝑥, 𝑦 =
𝑖=1

𝑘

𝑥𝑖 − 𝑦𝑖 2

• Manhattan distance

𝑓 𝑥, 𝑦 =
𝑖=1

𝑘

|𝑥𝑖 − 𝑦𝑖|

• Minkowski

𝑓 𝑥, 𝑦 =
𝑖=1

𝑘

𝑥𝑖 − 𝑦𝑖
𝑞

1
𝑞

Overview

07.03.2019 42

• Naïve Bayes

• Support Vector Machines

• K-nearest neighbor

• Ensemble methods

Ensemble Methods

07.03.2019 43

• Ensemble methods combine multiple classifiers to
obtain a better one

• Combined classifiers are similar (use the same
learning method) but the training datasets or the
weights’ examples are different

• Bagging (Bootstrap Aggregating)

• Boosting

Ensemble Methods
- Bootstrap -

07.03.2019 44

• Bootstrap uses statistical methods (e.g. mean and
standard deviation) for estimating a quantity from a
data sample

• Given a sample of 𝑛 values 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} it’s

mean is: 𝑥 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖

• If 𝑛 is small then the sample mean has an error

• The estimate of the mean can be improved by using
bootstrap

Ensemble Methods
- Bootstrap -

07.03.2019 45

• Bootstrap steps:

1. Create multiple random sub-samples of the initial sample
with replacement (meaning the same value can be
selected multiple times): 𝑥1, 𝑥2, … , 𝑥𝑚

2. Calculate the mean for each subsample: 𝑥1, 𝑥2, … , 𝑥𝑚

3. Calculate the average of all the sub-samples means and
use it as the estimated mean for the initial sample:
1

𝑚
 𝑗=1
𝑚 𝑥𝑗

Ensemble Methods
- Bagging -

07.03.2019 46

• Bagging ([Breiman 1996]) is a machine learning
ensemble algorithm designed to improve the stability
and accuracy of machine learning.

• Bagging reduces the variance and helps to avoid
overfitting.

• Bagging consists in getting a training set from the
initial labeled data set by sampling with replacement

Ensemble Methods
- Bagging -

07.03.2019 47

• Bagging consists in:

– Starting with the original dataset, build 𝒏 training datasets
by sampling with replacement (bootstrap samples)

– For each training dataset build a classifier using the same
learning algorithm.

– The final classifier is obtained by combining the results of
each classifiers (by voting for example).

– Bagging helps to improve the accuracy for unstable
learning algorithms: decision trees, neural networks.

• It does not help for kNN, Naïve Bayesian
classification or CARs.

Ensemble Methods
- Bagging -

07.03.2019 48

• Bagging is an application of the Bootstrap procedure to a
high-variance machine learning algorithm, typically
decision trees

• Bagging steps:
1. Create many random sub-samples of your dataset with replacement

2. Train the classifier on each sample

3. Given a new dataset, calculate the average prediction for each model

• For example: we have 5 bagged decision trees
(CART) that made the following class predictions for
a in input sample: blue, blue, red, blue and red, we
would take the most frequent class and predict
blue.

Ensemble Methods
- Random Forest -

07.03.2019 49

• Random Forest [Ho 1995, Ho 1998, Breiman 2001] is
an ensemble classifier consisting in a set of decision
trees.

• The final classifier output the modal value of the
classes output by each tree.

• Random Forests are an improvement over bagged
decision trees.

Ensemble Methods
- Random Forest -

07.03.2019 50

• A problem with decision trees like CART is that
they are greedy.

• They choose which variable to split on using a
greedy algorithm that minimizes error.

• As such, even with Bagging, the decision trees
can have a lot of structural similarities and in
turn have high correlation in their predictions.

Ensemble Methods
- Random Forest -

07.03.2019 51

• Combining predictions from multiple models
in ensembles works better if the predictions
from the sub-models are uncorrelated or at
best weakly correlated.

• Random forest changes the algorithm for the
way that the sub-trees are learned so that the
resulting predictions from all of the subtrees
have less correlation.

Ensemble Methods
- Random Forest -

07.03.2019 52

• It is a simple tweak. In CART, when selecting a
split point, the learning algorithm is allowed
to look through all variables and all variable
values in order to select the most optimal
split-point.

• The Random Forest algorithm changes this
procedure so that the learning algorithm is
limited to a random sample of features of
which to search.

Ensemble Methods
- Random Forest -

07.03.2019 53

• The number of features that can be searched at each split
point (𝑚) must be specified as a parameter to the algorithm.

• You can try different values and tune it using cross validation.

• The values determined experimentally are:

– For classification a good default is: 𝑚 = 𝑝

– For regression a good default is: 𝑚 =
𝑝

3

– Where:

• 𝑚 is the number of randomly selected features that can be
searched at a split point

• 𝑝 is the number of input variables

Ensemble Methods
- Random Forest -

07.03.2019 54

• Random Forest algorithm:

1. Choose T - number of trees to grow.

2. Choose m - number of variables used to split each node.
m  M, where M is the number of input variables.

3. Grow T trees. When growing each tree do the following:
I. Construct a bootstrap sample from training data with

replacement and grow a tree from this bootstrap sample.

II. When growing a tree at each node select m variables at random
and use them to find the best split.

III. Grow the tree to a maximal extent. There is no pruning.

4. Predict new data by aggregating the predictions of the
trees (e.g. majority votes for classification, average for
regression).

Ensemble Methods
- Extremely Randomized Trees -

07.03.2019 55

• Extremely Randomized Trees add an other step of
randomization.

• They are trained using bagging like random forest but the
top-down splitting for each tree is randomized.

• This means that instead of computing the best attribute
for the split using a function (e.g. information gain) a
random value is selected for the split.

• This value is selected from the feature's empirical
range

Ensemble Methods
- Boosting -

07.03.2019 56

• Boosting consists in building a sequence of weak
classifiers and adding them in the structure of the
final strong classifier.

• Weak learner (classifier) – a classification algorithm
with a substantial error rate which performance is
not random.

• In other words, a weak leaner has an accuracy only
slightly better than using random guessing

Ensemble Methods
- Boosting -

07.03.2019 57

• The weak classifiers are weighted based on the weak
learners' accuracy.

• Also data is reweighted after each weak classifier is
built such as examples that are incorrectly classified
gain some extra weight.

• The result is that the next weak classifiers in the
sequence focus more on the examples that previous
weak classifiers missed

Ensemble Methods
- AdaBoost -

07.03.2019 58

• AdaBoost [Freund 1997] (Adaptive Boosting) uses weak
learners output and combine it into a weighted sum that
represents the final output of the classifier

• Construct a strong classifier as a linear combination of
week classifiers

Ensemble Methods
- AdaBoost -

07.03.2019 59

• Advantages:

– It helps you choose the training set for each new
classifier that you train based on the results of the
previous classifier.

– It determines how much weight should be given
to each classifier’s proposed answer when
combining the results.

Ensemble Methods
- AdaBoost -

07.03.2019 60

• AdaBoost assigns a “weight” to each training
example, which determines the probability
that each example should appear in the
training set [Akerkar 2016] .

• Examples with higher weights are more likely
to be included in the training set, and vice
versa [Akerkar 2016] .

Ensemble Methods
- AdaBoost -

07.03.2019 61

• After training a classifier, AdaBoost increases
the weight on the misclassified examples so
that these examples will make up a larger part
of the next classifiers training set, and
hopefully the next classifier trained will
perform better on them [Akerkar 2016].

Ensemble Methods
- AdaBoost -

07.03.2019 62

• AdaBoost algorithm:

1. Input:
– A training dataset 𝐷 = { 𝑥1, 𝑦1𝑖 , 𝑥2, 𝑦2𝑖 , … , (𝑥𝑛, 𝑦𝑛𝑖)} (training set) with 𝑛

observations

• 𝑥𝑖 = {𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑚} is a an observation with 𝑚 attributes 𝐴 =
𝑎1, 𝑎2, … , 𝑎𝑚

• 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑘} is a set of 𝑘 classes, and 𝑦𝑗 is a class label

– The maximum number of iterations 𝑇

– A classifier 𝐶

2. Initialization:
– Initialize the weight distribution 𝛿1(𝑤𝑖) =

1

𝑛
for 𝑖 = 1, 𝑛

– Now, the data set is 𝐷1 = { 𝑥1, 𝑦1𝑖 , 𝑤1 , 𝑥2, 𝑦2𝑖 , 𝑤2 , … , (𝑥𝑛, 𝑦𝑛𝑖 , 𝑤𝑛)}

– The 𝑖=1
𝑛 𝑤𝑖 = 1

Ensemble Methods
- AdaBoost -

07.03.2019 63

• AdaBoost algorithm [Freund 1996, Liu]:

3. For 𝑡 ∈ {1, 2, … , 𝑇} do
– Train classifier 𝐶𝑡 (ℎ𝑡: 𝑅

𝑚 → 𝑌) using the weight distribution 𝛿𝑡(𝑤𝑖)

– Get the training error 𝜖𝑡 for classifier 𝐶𝑡(𝑜𝑟 ℎ𝑡) measured by using 𝛿𝑡 𝑤𝑖

– Compute 𝜖𝑡 = 𝑖=1
𝑛 𝛿𝑡 𝑤𝑖 only for ℎ𝑡 𝑥𝑖 ≠ 𝑦𝑖

– If 𝜖𝑡 >
1

2
then 𝑇 = 𝑡 − 1 and exit loop

– Else

• Compute the output weight 𝛽𝑡 =
1−𝜖𝑡

𝜖𝑡

• Update the weight distribution 𝛿𝑡+1 𝑤𝑖 = 𝛿𝑡(𝑤𝑖) ⋅
𝛽𝑡 𝑖𝑓 ℎ𝑡 𝑥𝑖 = 𝑦𝑖
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Normalization the weights 𝛿𝑡+1 𝑤𝑖 =
𝛿𝑡+1(𝑤𝑖)

 𝑖=1
𝑛 𝛿𝑡+1 𝑤𝑖

4. Output:

– the strong classifier is 𝐻 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖∈𝑌
 𝑡=1
𝑇 log

1

𝛽𝑡
for ℎ𝑡 𝑥 = 𝑦𝑖

Summary

07.03.2019 64

• This course presented:
– Naïve Bayes classifier: Bayes theorem, Naïve Bayes

algorithm for building classifiers, Gaussian Naïve Bayes.

– An introduction to support vector machines (SVMs):
model, definition, kernel functions.

– K-nearest neighbor

– Ensemble methods
• Bootstrap

• Bagging

• Random Forest

• Extremely Randomized Trees

• Boosting

• AdaBoost

References

07.03.2019 65

• [Liu 2011] Bing Liu, 2011. Web Data Mining, Exploring
Hyperlinks, Contents, and Usage Data, Second Edition,
Springer, chapter 3.

• [Han 2006] Jiawei Han, Micheline Kamber, Data Mining:
Concepts and Techniques, Second Edition, Morgan Kaufmann
Publishers, 2006

• [Cortes 1995] Cortes, Corinna; and Vapnik, Vladimir N.;
"Support-Vector Networks", Machine Learning, 20, 1995.

• [Akerkar 2016] Rajendra Akerkar, Priti Srinivas Sajja, Intelligent
Techniques for Data Science, Springer International
Publishing, 2016

References

07.03.2019 66

• [Liu 2007] Bing Liu. Web data mining: exploring hyperlinks,
contents, and usage data. Springer Science & Business Media,
2007.

• [Breiman 1996] Leo Breiman. Bagging predictors. Machine
learning, 24(2), 123-140, 1996.

• [Breiman 2001] Leo Breiman. Random Forests, Machine
learning, 45(1), 5-32, 2001

• [Freund 1996] Yoav Freund, Robert E. Schapire. Experiments
with a new boosting algorithm. International Conference on
Machine Learning, 148-156, 1996.

References

07.03.2019 67

• [Freund 1997]Yoav Freund, Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an application
to boosting, Journal of Computer and System
Sciences. 55(119), 23-37, 1997

• [Geurts 2006] Pierre Geurts, Damien Ernst, Louis Wehenkel.
Extremely randomized trees, Machine Learning, 63(1), 2006

• [Ho 1995] Tin Kam Ho. Random Decision Forests, International
Conference on Document Analysis and Recognition, 278-282,
1995

• [Ho 1998] Tin Kam Ho. The random subspaces method for
constructing decision forests, IEEE transactions on pattern
analysis and machine intelligence, 20(8), 832-844, 1998

