
Faculty of

Automatic

Control and
Computers

Computer

Science and

Engineering
Department

Association Rules and

Sequential Patterns

Ciprian-Octavian Truică

ciprian.truica@cs.pub.ro

University

Politehnica
of Bucharest

mailto:ciprian.truica@cs.pub.ro

Overview

07.03.2019 2

• Frequent Itemsets and Association Rules

• Apriori algorithm

• FP-Growth

• Class association rules

• Sequential patterns. GSP algorithm

Overview

07.03.2019 3

• Frequent Itemsets and Association Rules

• Apriori algorithm

• FP-Growth

• Class association rules

• Sequential patterns. GSP algorithm

Frequent itemsets and
Association Rules

07.03.2019 4

• Frequent itemsets and rules:

– Items and transactions

–Association rules

–Goals for mining transactions

Items and Transactions

07.03.2019 5

• Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set 𝑚 = |𝐼| of items.

• A transaction 𝑡 is a set of items, with 𝑡 ⊆ 𝐼.

• A transaction dataset (or database) 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} is a set

of 𝑛 = |𝑇| transactions. Each transaction 𝑡𝑖 may contain a

different number of items.

• An itemset 𝑆 is a subset of 𝐼 (𝑆 ⊆ 𝐼). If 𝑣 = |𝑆| is the number

of items in 𝑆 (or the cardinal of S), then 𝑆 is called a v-itemset.

• The support of an itemset 𝑋, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋), is equal to the
number (or proportion) of transactions in 𝑇 containing 𝑋.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = |𝑡 ∈ 𝑇: 𝑋 ⊆ 𝑡| or 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =
|𝑡∈𝑇:𝑋⊆𝑡|

|𝑇|

Frequent itemsets and
Association Rules

07.03.2019 6

• Frequent itemsets and rules:

– Items and transactions

–Association rules

–Goals for mining transactions

Association Rules

07.03.2019 7

• If 𝑋 and 𝑌 are two itemsets, an association rule is an
implication of the form 𝑋 → 𝑌 where 𝑋 ∩ 𝑌 = ∅.

• 𝑋 is the antecedent of the rule

• 𝑌 is the consequent of the rule

• For each association rule we can compute the support of the
rule and the confidence of the rule.

• If 𝑛 = |𝑇| (𝑛 is the number of transactions in 𝑇) then:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌) or 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 → 𝑌 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋∪𝑌

𝑛

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 ⟶ 𝑌 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 → 𝑌

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
=
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ∪ 𝑌

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

Association Rules

07.03.2019 8

• The support of a rule 𝑋 → 𝑌 is given by the proportion of transactions in 𝑇
containing both 𝑋 and 𝑌

• The confidence of a rule 𝑋 → 𝑌 is given by the proportion of transactions
containing 𝑌 in the set of transactions containing 𝑋 (the set of
transactions containing 𝑋 ∪ 𝑌 is included in the set of transactions
containing 𝑋).

All Transaction

𝑻, |𝑻| = 𝒏

Transactions

Containing 𝑿

Transactions

Containing

𝑿 ∪ 𝒀

Frequent itemsets and rules

07.03.2019 9

• If the support of a rule is high it describes a relationship
between itemsets that are found together in many
transactions

• If the confidence of a rule 𝑋 → 𝑌 is high then if a transaction
contains 𝑋 then with a high probability (equal to the
confidence of the rule) it also contains 𝑌

• We accept a rule as a valid one if the support and the
confidence of the rule are at least equal with some given
thresholds

Algorithm

07.03.2019 10

• Given a threshold for the support 𝑠 and confidence
𝑐 find all association rules:

– Step 1. Find all frequent itemsets 𝐹 containing at least two
items for which 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐹 ≥ 𝑠

– Step 2. For each frequent itemset 𝑈 ⊆ 𝐹 list all splits
(𝑋, 𝑌) with 𝑋 ∩ 𝑌 = ∅ and 𝑋 ∪ 𝑌 = 𝑈. Each split
generates a rule 𝑋 → 𝑌.

– Step 3. Find all rules for which 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 → 𝑌 ≥ 𝑐

Frequent itemsets and
Association Rules

07.03.2019 11

• Frequent itemsets and rules:

– Items and transactions

–Association rules

–Goals for mining transactions

Goals for mining Transactions

07.03.2019 12

• Goal 1: Find frequent itemsets. Frequent itemsets can be
used to identify the most important items in a set.

• Goal 2: Find association rules. Such a rule tells that some
items are highly correlated to some other items.

Example

07.03.2019 13

• If items are words and transactions are documents,
where each document is considered a bag of words,
then we can have:
– T = {Doc1, Doc2, …, Doc6}

– Doc1 = {rule, tree, classification}

– Doc2 = {relation, tuple, join, algebra, recommendation}

– Doc3 = {variable, loop, procedure, rule}

– Doc4 = {clustering, rule, tree, recommendation}

– Doc5 = {join, relation, selection, projection, classification}

– Doc6 = {rule, tree, recommendation}

Example

07.03.2019 14

• In that case:
– support({rule, tree}) = 3 or 50% or 0.5

– support({relation, join}) = 2 or 33.33% or 1/3

– support(rule→tree) = 50%

– confidence(rule→tree) = 75%

– support(tree→rule) = 50%

– confidence(tree→rule) = 3/3 = 100%

• If the threshold is s = 50% (or 0.5) then {rule, tree} is frequent
and {relation, join} is not.

• If the minimum confidence required is 80% then only the
second rule is kept, the first being considered not enough
powerful.

Algorithms

07.03.2019 15

• There are many algorithms for finding frequent itemsets and
consequently the association rules in a dataset.

• All these algorithms are developed for huge volumes of data,
meaning that the dataset is too large to be loaded and
processed in the main memory.

• For that reason minimizing the number of times the data are
read from the disk become a key feature of each algorithm

• Algorithms:
– Apriori

– FP-Growth

Overview

07.03.2019 16

• Frequent Itemsets and Association Rules

• Apriori algorithm

• FP-Growth

• Class association rules

• Sequential patterns. GSP algorithm

Apriori Algorithm

07.03.2019 17

• This algorithm is based on the Apriori principle: The Apriori
principle states that any subset of a frequent itemset is also a
frequent itemset

• Consequently each frequent v-itemset is the reunion of v (v-
1)-itemsets.

• That means we can determine the frequent itemsets with
dimension v examining only the set of all frequent itemsets
with dimension (v-1).

• It is a level-wise approach where each step requires a full
scan of the dataset

Apriori Algorithm

07.03.2019 18

1. Find frequent 1-itemsets (frequent items)

2. Find frequent 2-itemsets considering all pairs
of frequent items found in step 1

3. Find frequent 3-itemsets considering all
triplets with each subset in the frequent pairs
set found in step 2

4. . . . and so on.

Apriori Algorithm

07.03.2019 19

• 𝐶𝑖 is the set of candidates for frequent 𝑖-
itemsets and 𝐿𝑖 is the actual set of frequent
𝑖-itemsets.

• 𝐶𝑖 is the set of all itemsets found in
transactions (a subset of 𝐼) and may be
obtained either by a reunion of all
transactions in 𝑇 or by considering 𝐶1 = 𝐼
(in that case some items may have a zero
support)

• The process stops in two cases:
– No candidate from Ck has the support at least

min support 𝑠 (𝐿𝑘 is empty)

– There is no (𝑘 + 1)-itemset with all 𝑘-subsets in
𝐿𝑘 (meaning that 𝐶𝑘+1 is empty)

C1 L1

C2 L2

C3 L3

Ck Lk

Apriori Algorithm

07.03.2019 20

Algorithm Apriori (T, s)

𝐿1 ← 𝐼 or L1 = 𝑡∈𝑇 𝑎 𝑎 ∈ 𝑡}

for (𝑘 = 2; 𝐿𝑘−1 ≠ ∅, 𝑘 + +) do

𝐶𝑘 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝐿𝑘−1)

for each transaction t ∈ 𝑇 do

𝐶𝑡 ← 𝑐 𝑐 ∈ 𝐶𝑘 ∧ 𝑐 ⊆ 𝑡};

for each candidate 𝑐 ∈ 𝐶𝑡 do

𝑐𝑜𝑢𝑛𝑡 𝑐 ← 𝑐𝑜𝑢𝑛𝑡 𝑐 + 1

end

end

𝐿𝑘 ← {𝑐|𝑐 ∈ 𝐶𝑘 ∧ 𝑐𝑜𝑢𝑛𝑡 𝑐 ≥ 𝑠}

end

return 𝑘 𝐿𝑘

Apriori Algorithm

07.03.2019 21

• Candidate generation is also described in the original
algorithm as having two steps: the join step and the prune
step.

• The join step builds a larger set of candidates

• 𝐶𝑘 is generated by joining 𝐿𝑘−1 with itself

• The prune step removes some of the candidates that proved
impossible to be frequent.

• Any (𝑘 − 1)-itemset that is not frequent cannot be a subset
of a frequent 𝑘-itemset.

Example

07.03.2019 22

• Consider again the set of six transactions in:

– Doc1 = {rule, tree, classification}

– Doc2 = {relation, tuple, join, algebra, recommendation}

– Doc3 = {variable, loop, procedure, rule}

– Doc4 = {clustering, rule, tree, recommendation}

– Doc5 = {join, relation, selection, projection, classification}

– Doc6 = {rule, tree, recommendation}

• And a minimum support of 50% (minimum support
𝑠 = 3).

Example

07.03.2019 23

• At the first scan of the transaction dataset T the
support for each item is computed:

• With a minimum support 𝑠 = 3 then 𝐿1 =
{ {𝑟𝑢𝑙𝑒}, {𝑡𝑟𝑒𝑒}, {𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}}.

Rule 4 recommendation 3

Tree 3 variable 1

classification 2 loop 1

relation 2 procedure 1

Tuple 1 clustering 1

Join 2 selection1 1

algebra 1 projection 1

Example

07.03.2019 24

• Considering: rule < tree < recommendation

• From the join 𝐶2 = { {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒},
{𝑟𝑢𝑙𝑒, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}, {𝑡𝑟𝑒𝑒, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛} }.

• The prune step does not modify 𝐶2.

• The second scan of the transaction dataset leads to the
following pair support values:

• The only frequent pair is {rule, tree}: 𝐿2 = { {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒} }.

{rule, tree} 3

{rule, recommendation} 2

{tree, recommendation} 2

Example

07.03.2019 25

• Step 3. Because 𝐿2 has a single element, 𝐶3 = ∅ , so
𝐿3 = ∅, and the process stops.

• 𝐿 = 𝐿1 ∪ 𝐿2 = { {𝑟𝑢𝑙𝑒}, {𝑡𝑟𝑒𝑒},
{𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}, {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒} }.

• If we consider only maximal itemsets, 𝐿 =
{ {𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}, {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒} }.

Apriori Algorithm

07.03.2019 26

• Advantages
– Uses large itemsets property

– Easily parallelized

– Easy to implement

• Disadvantages
– Assumes transaction dataset is resident in memory

– Requires many dataset scans

Overview

07.03.2019 27

• Frequent Itemsets and Association Rules

• Apriori algorithm

• FP-Growth

• Class association rules

• Sequential patterns. GSP algorithm

FP-Growth

07.03.2019 28

• FP-Growth (Frequent Pattern Growth)
algorithm performs frequent itemsets
discovery without candidate generation. It has
a 2 steps approach:

– Step 1: Build FP-tree. Requires only 2 passes over
the dataset.

– Step 2: Extracts frequent itemsets from the FP-
tree

FP-Growth

07.03.2019 29

• At the first pass over the data frequent items are
discovered.

• All other items (infrequent items) are discarded:
transactions will contain only frequent items.

• Also, these items are ordered by their support in
decreasing order.

FP-Growth

07.03.2019 30

• At the second pass over the data the FP-tree is built:
– FP-Growth considers an ordered set of items (frequent items ordered

by their support).

– Each transaction is written with items in that order.

– The algorithm reads a transaction at a time and adds a new branch to
the tree, branch containing as nodes the transaction items.

– Each node has a counter.

– If two transactions have the same prefix the two branches overlap on
the nodes of the common prefix and the counter of those nodes are
incremented.

– Also, nodes with the same item are linked by orthogonal paths.

FP-Growth

07.03.2019 31

• After building the FP-tree the algorithm starts to build partial
trees (called conditional FP-trees) ending with a given item (a
suffix).

• The item is not present in the tree but all frequent itemsets
generated from that conditional tree will contain that item.

• In building the conditional FP-tree, non-frequent items are
skipped (but the branch remains if there are still nodes on it).

FP-Growth

07.03.2019 32

Source:

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-

Growth_Algorithm#/media/File:FPG_FIG_01.jpg

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#/media/File:FPG_FIG_01.jpg

Overview

07.03.2019 33

• Frequent Itemsets and Association Rules

• Apriori algorithm

• FP-Growth

• Class association rules

• Sequential patterns. GSP algorithm

Class Association Rules

07.03.2019 34

• Given a set of 𝑚 = |𝐼| of items 𝐼 = 𝑖1, 𝑖2, … , 𝑖𝑚 and a set of

𝑛 = |𝑇| transactions 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}

• Each transaction 𝑡𝑖 is labeled with a class 𝑐, 𝑐 ∈ 𝐶 where 𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑝} and 𝐶 ∩ 𝐼 = ∅

• A class association rule is a construction with the following
syntax:

𝑋 → 𝑦 where 𝑋 ⊆ 𝐼 and 𝑦 ∈ 𝐶

• The definition of the support and confidence for a class
association rule is the same with the case of association rules.

Class Association Rules

07.03.2019 35

• Consider the following set of six transactions, now labeled
with class labels from C = {database, datamining,
programming}:

Doc1 {rule, tree, classification} datamining

Doc2 {relation, tuple, join, algebra, recommendation} database

Doc3 {variable, loop, procedure, rule} programming

Doc4 {clustering, rule, tree, recommendation} datamining

Doc5 {join, relation, selection, projection, classification} database

Doc6 {rule, tree, recommendation} datamining

Class Association Rules

07.03.2019 36

Then the CARs:

rule → datamining;

recommendation → database

has:
• support(rule → datamining) = 3/6 = 50%,

• confidence(rule → datamining) = 3/4 = 75%.

• support(recommendation → database) = 1/6  17%,

• confidence(recommendation → database) = 1/3  33%

For a minimum support 𝑠 = 50% and a minimum
confidence 𝑐 = 50% the first rule stands and the second
is rejected.

Class Association Rules

07.03.2019 37

• Algorithm for mining CARs using a modified Apriori
algorithm:
– At the first pass over the algorithm computes 𝐹1 where

𝐹1 = { the set of CARs with a single item
on the left side verifying a given

minimum support 𝑠 and
minimum confidence 𝑐}.

– At step 𝑘, 𝐶𝑘is built from 𝐹𝑘−1 and then, passing through
the data and counting for each member of 𝐶𝑘 the support
and the confidence, 𝐹𝑘 is determined.

– Candidate generation is almost the same as for association
rules with the only difference that in the join step only
CARs with the same class in the right side are joined.

Class Association Rules

07.03.2019 38

Ck =  // starts with an empty set

forall f1, f2  Fk-1 // for each pair of frequent CAR

f1 = {i1, … , ik-2, ik-1} → y // only last item

f2 = {i1, … , ik-2, i’k-1} → y // is different

ik-1 < i’k-1 do // and same class

c = {i1, …, ik-1, i’k-1} → y; // join step

Ck = Ck  {c}; // add new candidate

for each (k-1)-subset s of {i1, …, ik-1, i’k-1} do

if (s → y  Fk-1) then

Ck = Ck - {c}; // prune step

endfor

endfor

Overview

07.03.2019 39

• Frequent Itemsets and Association Rules

• Apriori algorithm

• FP-Growth

• Class association rules

• Sequential patterns. GSP algorithm

Sequential Patterns

07.03.2019 40

• Itemset: a set of n distinct items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛 }

Example: I={A,B,C,D,E,M}

• Event: a non-empty collection of items; we can assume that
items are in a given order: (𝑖1, 𝑖2, … , 𝑖𝑘)

• Sequence : an ordered list of events: < 𝑒1, 𝑒2, … , 𝑒𝑚 >

• Length of a sequence: the number of items in the sequence

Example: <AM, CDE, AE> has length 7

• Size of a sequence: the number of itemsets in the sequence

Example: <AM, CDE, AE> has size 3

• K-sequence : sequence with 𝑘 items, or with length 𝑘

Example: <B, AC> is a 3-sequence

Sequential Patterns

07.03.2019 41

• Subsequence and supersequence:
– 𝐸 = < 𝑒1, 𝑒2, … , 𝑒𝑢 > is a subsequence of/or included in
𝐹 = < 𝑓1 𝑓2 …𝑓𝑣 > if there are some integers
1  𝑗1 < 𝑗2 < … < 𝑗𝑢−1 < 𝑗𝑢  𝑣
such that 𝑒1  𝑓𝑗1 and e2  𝑓𝑗2 and … and 𝑒𝑢  𝑓𝑗𝑢.

– 𝐹 is a supersequence of the first sequence 𝐸 or it contains the entire
sequence (𝐸 ⊆ 𝐹)

Sequential Patterns

07.03.2019 42

• Sequence dataset (database) X: a set of sequences

• Frequent sequence (or sequential pattern): a sequence included
in more than s members of the sequence database X;

• s is the user-specified minimum support.

• The number of sequences from X containing a given sequence is
called the support of that sequence.

• So, a frequent sequence is a sequence with a support at least s
where s is the minimum support specified by the user.

GSP Algorithm

07.03.2019 43

• Similar with Apriori:
Algorithm GSP(I, X, minsup)

C1 = I // initial n candidates

L1 = {<{f}>| f∈ C1, f.count/n  minsup}; // first pass over X

for (k = 2; Lk-1  ; k++) do // loop until Lk-1 is empty

Ck = candidate-generation(Lk-1);

foreach s  X do //

foreach c  Ck do

if c is-contained-in s then

c.count++;

endfor

endfor

Lk = {c  Ck | c.count/n minsup}

endfor

return k Fk;

GSP Algorithm

07.03.2019 44

• Candidate generation is made in a join and prune
manner.

• At the join step two sequences 𝑓1 and 𝑓2 from 𝐿𝑘−1
are joined if removing the first item from 𝑓1 and the
last item from 𝑓2 the result is the same.

• The joined sequence is obtained by adding the last
item of 𝑓2 to 𝑓1, with the same status (separate
element or part of the last element of 𝑓1).

Summary

07.03.2019 45

• This third course presented:

– What are frequent itemsets and rules and their
relationship

– Apriori and FP-growth algorithms for discovering frequent
itemsets.

– What are class association rules and how can be mined

– An introduction to sequential patterns and the GSP
algorithm

