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• Frequent itemsets and rules: 

– Items and transactions

–Association rules

–Goals for mining transactions
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• Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set 𝑚 = |𝐼| of items. 

• A transaction 𝑡 is a set of items, with 𝑡 ⊆ 𝐼. 

• A transaction dataset (or database) 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} is a set 

of 𝑛 = |𝑇| transactions. Each transaction 𝑡𝑖 may contain a 

different number of items.

• An itemset 𝑆 is a subset of 𝐼 (𝑆 ⊆ 𝐼). If 𝑣 = |𝑆| is the number 

of items in 𝑆 (or the cardinal of S), then 𝑆 is called a v-itemset.

• The support of an itemset 𝑋, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋), is equal to the 
number (or proportion) of transactions in 𝑇 containing 𝑋.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = |𝑡 ∈ 𝑇: 𝑋 ⊆ 𝑡| or 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =
|𝑡∈𝑇:𝑋⊆𝑡|

|𝑇|
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• If 𝑋 and 𝑌 are two itemsets, an association rule is an 
implication of the form 𝑋 → 𝑌 where 𝑋 ∩ 𝑌 = ∅.

• 𝑋 is the antecedent of the rule 

• 𝑌 is the consequent of the rule

• For each association rule we can compute the support of the 
rule and the confidence of the rule. 

• If 𝑛 = |𝑇| (𝑛 is the number of transactions in 𝑇) then: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌) or 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 → 𝑌 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋∪𝑌

𝑛

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 ⟶ 𝑌 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 → 𝑌

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
=
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ∪ 𝑌

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
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• The support of a rule 𝑋 → 𝑌 is given by the proportion of transactions in 𝑇
containing both 𝑋 and 𝑌

• The confidence of a rule 𝑋 → 𝑌 is given by the proportion of transactions 
containing 𝑌 in the set of transactions containing 𝑋 (the set of 
transactions containing 𝑋 ∪ 𝑌 is included in the set of transactions 
containing 𝑋).

All Transaction

𝑻, |𝑻| = 𝒏

Transactions  

Containing 𝑿

Transactions 

Containing 

𝑿 ∪ 𝒀
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• If the support of a rule is high it describes a relationship 
between itemsets that are found together in many 
transactions

• If the confidence of a rule 𝑋 → 𝑌 is high then if a transaction 
contains 𝑋 then with a high probability (equal to the 
confidence of the rule) it also contains 𝑌

• We accept a rule as a valid one if the support and the 
confidence of the rule are at least equal with some given 
thresholds



Algorithm
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• Given a threshold for the support 𝑠 and confidence 
𝑐 find all association rules:

– Step 1. Find all frequent itemsets 𝐹 containing at least two 
items for which 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐹 ≥ 𝑠

– Step 2. For each frequent itemset 𝑈 ⊆ 𝐹 list all splits 
(𝑋, 𝑌) with 𝑋 ∩ 𝑌 = ∅ and 𝑋 ∪ 𝑌 = 𝑈. Each split 
generates a rule 𝑋 → 𝑌.

– Step 3. Find all rules for which 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 → 𝑌 ≥ 𝑐
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• Goal 1: Find frequent itemsets. Frequent itemsets can be 
used to identify the most important items in a set. 

• Goal 2: Find association rules. Such a rule tells that some 
items are highly correlated to some other items. 
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• If items are words and transactions are documents, 
where each document is considered a bag of words, 
then we can have:
– T = {Doc1, Doc2, …, Doc6} 

– Doc1 = {rule, tree, classification}

– Doc2 = {relation, tuple, join, algebra, recommendation}

– Doc3 = {variable, loop, procedure, rule}

– Doc4 = {clustering, rule, tree, recommendation}

– Doc5 = {join, relation, selection, projection, classification}

– Doc6 = {rule, tree, recommendation}
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• In that case:
– support({rule, tree}) = 3 or 50% or 0.5

– support({relation, join}) = 2 or 33.33% or 1/3

– support(rule→tree) = 50%

– confidence(rule→tree) = 75%

– support(tree→rule) = 50%

– confidence(tree→rule) = 3/3 = 100%

• If the threshold is s = 50% (or 0.5) then {rule, tree} is frequent 
and {relation, join} is not.

• If the minimum confidence required is 80% then only the 
second rule is kept, the first being considered not enough 
powerful.



Algorithms
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• There are many algorithms for finding frequent itemsets and 
consequently the association rules in a dataset. 

• All these algorithms are developed for huge volumes of data, 
meaning that the dataset is too large to be loaded and 
processed in the main memory. 

• For that reason minimizing the number of times the data are 
read from the disk become a key feature of each algorithm

• Algorithms:
– Apriori

– FP-Growth
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• This algorithm is based on the Apriori principle: The Apriori
principle states that any subset of a frequent itemset is also a 
frequent itemset

• Consequently each frequent v-itemset is the reunion of v (v-
1)-itemsets. 

• That means we can determine the frequent itemsets with 
dimension v examining only the set of all frequent itemsets
with dimension (v-1).

• It is a level-wise approach where each step requires a full 
scan of the dataset



Apriori Algorithm
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1. Find frequent 1-itemsets (frequent items) 

2. Find frequent 2-itemsets considering all pairs 
of frequent items found in step 1

3. Find frequent 3-itemsets considering all 
triplets with each subset in the frequent pairs 
set found in step 2

4. . . . and so on. 
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• 𝐶𝑖 is the set of candidates for frequent 𝑖-
itemsets and 𝐿𝑖 is the actual set of frequent 
𝑖-itemsets. 

• 𝐶𝑖 is the set of all itemsets found in 
transactions (a subset of 𝐼) and may be 
obtained either by a reunion of all 
transactions in 𝑇 or by considering 𝐶1 = 𝐼
(in that case some items may have a zero 
support)

• The process stops in two cases:
– No candidate from Ck has the support at least 

min support 𝑠 (𝐿𝑘 is empty)

– There is no (𝑘 + 1)-itemset with all 𝑘-subsets in 
𝐿𝑘 (meaning that 𝐶𝑘+1 is empty)

C1    L1 

C2    L2 

C3    L3 

 

Ck    Lk 
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Algorithm Apriori (T, s)

𝐿1 ← 𝐼 or L1 =  𝑡∈𝑇 𝑎 𝑎 ∈ 𝑡}

for (𝑘 = 2; 𝐿𝑘−1 ≠ ∅, 𝑘 + +) do 

𝐶𝑘 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝐿𝑘−1)

for each transaction t ∈ 𝑇 do

𝐶𝑡 ← 𝑐 𝑐 ∈ 𝐶𝑘 ∧ 𝑐 ⊆ 𝑡};

for each candidate 𝑐 ∈ 𝐶𝑡 do

𝑐𝑜𝑢𝑛𝑡 𝑐 ← 𝑐𝑜𝑢𝑛𝑡 𝑐 + 1

end

end

𝐿𝑘 ← {𝑐|𝑐 ∈ 𝐶𝑘 ∧ 𝑐𝑜𝑢𝑛𝑡 𝑐 ≥ 𝑠}

end

return  𝑘 𝐿𝑘
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• Candidate generation is also described in the original 
algorithm as having two steps: the join step and the prune 
step. 

• The join step builds a larger set of candidates

• 𝐶𝑘 is generated by joining 𝐿𝑘−1 with itself

• The prune step removes some of the candidates that proved 
impossible to be frequent.

• Any (𝑘 − 1)-itemset that is not frequent cannot be a subset 
of a frequent 𝑘-itemset.
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• Consider again the set of six transactions in:

– Doc1 = {rule, tree, classification}

– Doc2 = {relation, tuple, join, algebra, recommendation}

– Doc3 = {variable, loop, procedure, rule}

– Doc4 = {clustering, rule, tree, recommendation}

– Doc5 = {join, relation, selection, projection, classification}

– Doc6 = {rule, tree, recommendation}

• And a minimum support of 50% (minimum support 
𝑠 = 3). 
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• At the first scan of the transaction dataset T the 
support for each item is computed:

• With a minimum support 𝑠 = 3 then 𝐿1 =
{ {𝑟𝑢𝑙𝑒}, {𝑡𝑟𝑒𝑒}, {𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}}. 

Rule 4 recommendation 3 

Tree 3 variable 1 

classification 2 loop 1 

relation 2 procedure 1 

Tuple 1 clustering 1 

Join 2 selection1 1 

algebra 1 projection 1 
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• Considering: rule < tree < recommendation

• From the join 𝐶2 = { {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒},
{𝑟𝑢𝑙𝑒, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}, {𝑡𝑟𝑒𝑒, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛} }.

• The prune step does not modify 𝐶2. 

• The second scan of the transaction dataset leads to the 
following pair support values:

• The only frequent pair is {rule, tree}: 𝐿2 = { {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒} }.

{rule, tree} 3 

{rule, recommendation} 2 

{tree, recommendation} 2 
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• Step 3. Because 𝐿2 has a single element, 𝐶3 = ∅ , so 
𝐿3 = ∅, and the process stops. 

• 𝐿 = 𝐿1 ∪ 𝐿2 = { {𝑟𝑢𝑙𝑒}, {𝑡𝑟𝑒𝑒},
{𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}, {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒} }. 

• If we consider only maximal itemsets, 𝐿 =
{ {𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛}, {𝑟𝑢𝑙𝑒, 𝑡𝑟𝑒𝑒} }.
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• Advantages
– Uses large itemsets property

– Easily parallelized

– Easy to implement

• Disadvantages
– Assumes transaction dataset is resident in memory

– Requires many dataset scans
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• FP-Growth (Frequent Pattern Growth) 
algorithm performs frequent itemsets
discovery without candidate generation. It has 
a 2 steps approach:

– Step 1: Build FP-tree. Requires only 2 passes over 
the dataset.

– Step 2: Extracts frequent itemsets from the FP-
tree



FP-Growth
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• At the first pass over the data frequent items are 
discovered. 

• All other items (infrequent items) are discarded: 
transactions will contain only frequent items. 

• Also, these items are ordered by their support in 
decreasing order.



FP-Growth
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• At the second pass over the data the FP-tree is built:
– FP-Growth considers an ordered set of items (frequent items ordered 

by their support). 

– Each transaction is written with items in that order. 

– The algorithm reads a transaction at a time and adds a new branch to 
the tree, branch containing as nodes the transaction items. 

– Each node has a counter. 

– If two transactions have the same prefix the two branches overlap on 
the nodes of the common prefix and the counter of those nodes are 
incremented. 

– Also, nodes with the same item are linked by orthogonal paths.



FP-Growth
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• After building the FP-tree the algorithm starts to build partial 
trees (called conditional FP-trees) ending with a given item (a 
suffix). 

• The item is not present in the tree but all frequent itemsets
generated from that conditional tree will contain that item. 

• In building the conditional FP-tree, non-frequent items are 
skipped (but the branch remains if there are still nodes on it).



FP-Growth
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Source: 

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-

Growth_Algorithm#/media/File:FPG_FIG_01.jpg

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#/media/File:FPG_FIG_01.jpg
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• Given a set of 𝑚 = |𝐼| of items 𝐼 = 𝑖1, 𝑖2, … , 𝑖𝑚 and a set of 

𝑛 = |𝑇| transactions 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}

• Each transaction 𝑡𝑖 is labeled with a class 𝑐, 𝑐 ∈ 𝐶 where 𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑝} and 𝐶 ∩ 𝐼 = ∅

• A class association rule is a construction with the following 
syntax:

𝑋 → 𝑦 where 𝑋 ⊆ 𝐼 and 𝑦 ∈ 𝐶

• The definition of the support and confidence for a class 
association rule is the same with the case of association rules.
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• Consider the following set of six transactions, now labeled 
with class labels from C = {database, datamining, 
programming}:

Doc1   {rule, tree, classification}   datamining 

Doc2   {relation, tuple, join, algebra, recommendation}   database 

Doc3   {variable, loop, procedure, rule}   programming 

Doc4   {clustering, rule, tree, recommendation}   datamining 

Doc5   {join, relation, selection, projection, classification}  database 

Doc6   {rule, tree, recommendation}   datamining 
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Then the CARs: 

rule → datamining; 

recommendation → database

has: 
• support(rule → datamining) = 3/6 = 50%, 

• confidence(rule → datamining) = 3/4 = 75%.

• support(recommendation → database) = 1/6  17%, 

• confidence(recommendation → database) = 1/3  33%

For a minimum support 𝑠 = 50% and a minimum 
confidence 𝑐 = 50% the first rule stands and the second 
is rejected.
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• Algorithm for mining CARs using a modified Apriori
algorithm: 
– At the first pass over the algorithm computes 𝐹1 where 

𝐹1 = { the set of CARs with a single item 
on the left side verifying a given 

minimum support 𝑠 and 
minimum confidence 𝑐}. 

– At step 𝑘, 𝐶𝑘is built from 𝐹𝑘−1 and then, passing through 
the data and counting for each member of 𝐶𝑘 the support 
and the confidence, 𝐹𝑘 is determined. 

– Candidate generation is almost the same as for association 
rules with the only difference that in the join step only 
CARs with the same class in the right side are joined.
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Ck =  // starts with an empty set

forall f1, f2  Fk-1 // for each pair of frequent CAR

f1 = {i1, … , ik-2, ik-1}  → y // only last item

f2 = {i1, … , ik-2, i’k-1} → y // is different

ik-1 < i’k-1 do                // and same class

c  = {i1, …, ik-1, i’k-1} → y;    // join step

Ck = Ck  {c}; // add new candidate

for each (k-1)-subset s of {i1, …, ik-1, i’k-1}  do

if (s → y  Fk-1) then

Ck = Ck - {c};            // prune step

endfor

endfor
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• Itemset: a set of n distinct items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛 }

Example: I={A,B,C,D,E,M}

• Event: a non-empty collection of items; we can assume that 
items are in a given order: (𝑖1, 𝑖2, … , 𝑖𝑘)

• Sequence : an ordered list of events: < 𝑒1, 𝑒2, … , 𝑒𝑚 >

• Length of a sequence: the number of items in the sequence

Example: <AM, CDE, AE> has length 7

• Size of a sequence: the number of itemsets in the sequence

Example: <AM, CDE, AE> has size 3

• K-sequence : sequence with 𝑘 items, or with length 𝑘

Example: <B, AC> is a 3-sequence
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• Subsequence and supersequence: 
– 𝐸 = < 𝑒1, 𝑒2, … , 𝑒𝑢 > is a subsequence of/or included in 
𝐹 = < 𝑓1 𝑓2 …𝑓𝑣 > if  there are some integers  
1  𝑗1 < 𝑗2 < … < 𝑗𝑢−1 < 𝑗𝑢  𝑣
such that 𝑒1  𝑓𝑗1 and e2  𝑓𝑗2 and … and 𝑒𝑢  𝑓𝑗𝑢. 

– 𝐹 is a supersequence of the first sequence 𝐸 or it contains the entire 
sequence (𝐸 ⊆ 𝐹)
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• Sequence dataset (database) X: a set of sequences

• Frequent sequence (or sequential pattern): a sequence included
in more than s members of the sequence database X;

• s is the user-specified minimum support.

• The number of sequences from X containing a given sequence is
called the support of that sequence.

• So, a frequent sequence is a sequence with a support at least s
where s is the minimum support specified by the user.
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• Similar with Apriori:
Algorithm GSP(I, X, minsup)

C1 = I //  initial n candidates

L1 = {<{f}>| f∈ C1, f.count/n  minsup}; // first pass over X

for (k = 2; Lk-1  ; k++) do // loop until Lk-1 is empty

Ck = candidate-generation(Lk-1);

foreach s  X do // 

foreach c  Ck do

if c is-contained-in s then

c.count++; 

endfor

endfor

Lk = {c  Ck | c.count/n minsup}

endfor

return k Fk;



GSP Algorithm
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• Candidate generation is made in a join and prune 
manner. 

• At the join step two sequences 𝑓1 and 𝑓2 from 𝐿𝑘−1
are joined if removing the first item from 𝑓1 and the 
last item from 𝑓2 the result is the same. 

• The joined sequence is obtained by adding the last 
item of 𝑓2 to 𝑓1, with the same status (separate 
element or part of the last element of 𝑓1).



Summary

07.03.2019 45

• This third course presented:

– What are frequent itemsets and rules and their 
relationship 

– Apriori and FP-growth algorithms for discovering frequent 
itemsets.

– What are class association rules and how can be mined

– An introduction to sequential patterns and the GSP 
algorithm


