The material for this tutorial was taken from Darren Hoch’s “Linux System and
Performance Monitoring”. You can access it at: http://ufsdump.org/papers/oscon2009-
linux-monitoring.pdf.

00 Tutorial objectives

e Offer an introduction to Performance Monitoring

e Get you acquainted with the vmstat command and its output

e Get you to use simple commands for monitoring the performance of the CPU and
Memory

01 Introduction to Performance Monitoring

Performance tuning is the process of finding bottlenecks in a system and tuning the
operating system to eliminate these bottlenecks. Many administrators believe that
performance tuning can be a “cook book” approach, which is to say that setting some
parameters in the kernel will simply solve a problem. This is not the case. Performance
tuning is about achieving balance between the different sub-systems of an OS. These
sub-systems include: CPU, Memory, I0 and Network.

These sub-systems are all highly dependent on each other. Any one of them with high
utilisation can easily cause problems in the other. In order to apply changes to tune a
system, the location of the bottleneck must be located. Although one sub-system
appears to be causing the problems, it may be as a result of overload on another sub-
system.

In order to choose where to start looking for tuning bottlenecks, it is important to
understand the behaviour of the system under analysis. The application stack of any
system is often broken down into two types:

e IO Bound
o An IO bound application requires heavy use of memory and the underlying
storage system.
o This is due to the fact that an IO bound application is processing (in
memory) large amounts of data.
o An IO bound application does not require much of the CPU or network
(unless the storage system is on a network).
o 10 bound applications use CPU resources to make IO requests and then
often go into a sleep state.
o Database applications are often considered 10 bound applications.
e CPU Bound
A CPU bound application requires heavy use of the CPU.
CPU bound applications require the CPU for batch processing and/or
mathematical calculations.
o High volume web servers, mail servers, and any kind of rendering server
are often considered CPU bound applications

http://ufsdump.org/papers/oscon2009-linux-monitoring.pdf
http://ufsdump.org/papers/oscon2009-linux-monitoring.pdf

System utilisation is contingent on administrator expectations and system specifications.
The only way to understand if a system is having performance issues is to understand
what is expected of the system. What kind of performance should be expected and what
do those numbers look like? The only way to establish this is to create a baseline.
Statistics must be available for a system under acceptable performance so it can be
compared later against unacceptable performance. When dealing with a system under
heavy utilisation, it needs to be determined whether the system is managing or not.

Go through Ex00 (at the end of the document)

02 Introducing the CPU

The CPU utilisation is dependent on what resources are attempting to access it. The
kernel has a scheduler that is responsible for scheduling two kinds of resources: threads
(single or multi) and interrupts. The scheduler assigns different priorities to different
resources. The following list outlines the priorities from the highest to the lowest:

o Interrupts — Devices tell the kernel that they are done processing. For example, a
NIC delivers a packet or a hard drive provides an IO request.

e Kernel (System) Processes — All kernel processing is handled at this level of
priority.

e User Processes - This space is often referred to as “userland”. All software
applications run in the user space. This space has the lowest priority in the kernel
scheduling mechanism.

In order to understand how the kernel manages these different resources, a few key
concepts need to be introduced. The following sections introduce context switches, run
queues, and utilisation.

Context Switches

Most modern processors can only run one process (single threaded) or thread at a time.
The n-way Hyper threaded processors have the ability to run n threads at a time. Still,
the Linux kernel views each processor core on a dual core chip as an independent
processor. For example, a system with one dual core processor is reported as two
individual processors by the Linux kernel.

A standard Linux kernel can run anywhere from 50 to 50,000 process threads at once.
With only one CPU, the kernel has to schedule and balance these process threads. Each
thread has an allotted time quantum to spend on the processor. Once a thread has
either passed the time quantum or has been preempted by something with a higher
priority (hardware interrupts, for example), that thread is placed back into a queue while
the higher priority thread is placed on the processor. This switching of threads is referred
to as a context switch.

Every time the kernel conducts a context switch, resources are devoted to moving that
thread off of the CPU registers and into a queue. The higher the volume of context
switches on a system, the more work the kernel has to do in order to manage the
scheduling of processes.

The Run Queue

Each CPU maintains a run queue of threads. Ideally, the scheduler should be constantly
running and executing threads. Process threads are either in a sleep state (blocked and
waiting on I0O) or they are runnable. If the CPU sub-system is heavily utilised, then it is
possible that the kernel scheduler can’t keep up with the demand of the system. As a
result, runnable processes start to fill up a run queue. The larger the run queue, the
longer it will take for process threads to execute.

A very popular term called “load” is often used to describe the state of the run queue.
The system load is a combination of the amount of process threads currently executing
along with the amount of threads in the CPU run queue. If two threads were executing
on a dual core system and 4 were in the run queue, then the load would be 6. Utilities
such as top report load averages over the course of 1, 5, and 15 minutes.

CPU Utilisation

The CPU utilisation is an important metric for measuring a system’s behaviour. Most
performance monitoring tools divide the CPU utilisation into the following categories:

e User Time — The percentage of time a CPU spends executing process threads in
the user space.

¢ System Time - The percentage of time the CPU spends executing kernel threads
and interrupts.

e Wait IO - The percentage of time a CPU spends idle because ALL process threads
are blocked waiting for 10 requests to complete.

e Idle - The percentage of time a processor spends in a completely idle state.

03 CPU Performance Monitoring

Understanding how well a CPU is performing is a matter of interpreting the run queue,
its utilisation, and the amount of context switching performed. Although performance is
relative to baseline statistics, in the absence of these statistics, the following general
performance expectations of a system can be used as a guideline:

e Run Queues - A run queue should not have more than 3 threads queued per
processor. For example, a dual processor system should not have more than 6
threads in the run queue.

e CPU Utilisation - A fully utilised CPU should have the following utilisation
distribution:

o 65% - 70% User Time
o 30% - 35% System Time
o 0% - 5% Idle Time

e Context Switches — The amount of context switches is directly relevant to CPU
utilisation. As long as the CPU sustains the previously presented utilisation
distribution, it is acceptable to have a high amount of context switches.

The following two examples give interpretations of the outputs generated by vmstat.

Example - Sustained CPU Utilisation

vmstat 1
procs memory swap io system cpu

r b swpd free buff cache si so bi bo in cs us sy wa id
3 0 206564 15092 80336 176080 0 0 0 0 718 26 81 19 0 0
2 0 206564 14772 80336 176120 0 0 0 0 758 23 96 4 0 0
1 0 206564 14208 80336 176136 0 0 0 0 820 20 96 4 0 0O
1 0 206956 13884 79180 175964 0 412 0 2680 1008 80 93 7 0 0O
2 0 207348 14448 78800 175576 0 412 0 412 763 70 84 16 0 O
2 0 207348 15756 78B00 175424 0 0 0 0 874 25 89 11 0 0O
1 0 207348 16368 78800 175596 0 0 0 0 940 24 86 14 0 0O
1 0 207348 16600 78800 175604 0 0 0 0 929 27 95 3 0 2
3 0 207348 16976 78548 175876 0 0 0 2508 969 35 93 7 0 0
4 0 207348 16216 78548 175704 0 0 0 0 874 36 93 6 0 1
4 0 207348 16424 78548 175776 0 0 0 0 850 26 7723 0 0
2 0 207348 17496 78556 175840 0 0 0 0 736 23 83 17 0 0
0 0 207348 17680 78556 175868 0 0 0 0 8el 21 91 8 0 1

The following observations can be made based on the output:

e There are a high amount of interrupts (in) and a low amount of context switches.
It appears that a single process is making requests to hardware devices.

e To further prove the presence of a single application, the user (us) time is
constantly at 85% and above. Along with the low amount of context switches, the
process comes on the processor and stays on the processor.

e The run queue is just about at the limits of acceptable performance. On a couple
occasions, it goes beyond acceptable limits.

Example - Overloaded Scheduler

vmstat 1

procs Memory swap io system cpu
r b swpd free buff cache si S0 bi bo in cs us sy wa id
2 1 207740 98476 81344 180972 0 0 2496 0 900 2883 4 12 57 27
0 1 207740 %6448 83304 180984 0 0 1968 328 810 2559 8 9 83 0
0 1 207740 94404 85348 180984 0 0 2044 0 829 2879 9 6 78 7
0 1 207740 92576 87176 180984 0 0 1828 0 €89 2088 3 9 78 10
2 0 207740 91300 88452 180984 0 0 1276 0 565 2182 7 6 83 4
3 1 207740 90124 89628 180984 0 0 1176 0 551 2219 2 7 ¢1 O
4 2 207740 89240 90512 180984 0 0 880 520 443 907 22 10 &7 O
5 3 207740 88056 91680 180984 0 0 1168 0 628 1248 12 11 77 0
4 2 207740 86852 92880 180984 0 0 1200 0 654 1505 6 7 87 0
& 1 207740 85736 93996 180984 0 0 1116 0 526 1512 5 10 85 O
0 1 207740 84844 94888 180984 0 0 892 0 438 1556 6 4 90 0O

The following observations can be made based on the output:

e There are a high amount of interrupts (in) and a low amount of context switches.
It appears that a single process is making requests to hardware devices.

e To further prove the presence of a single application, the user (us) time is
constantly at 85% and above. Along with the low amount of context switches, the
process comes on the processor and stays on the processor.

e The run queue is just about at the limits of acceptable performance. On a couple
occasions, it goes beyond acceptable limits.

Go through Ex01 (at the end of the document)

Takeaway actions for monitoring the CPU performance

e Checking the system run queue and making sure there are no more than 3
runnable threads per processor

e Making sure the CPU utilization is split between 70/30 between user and system

e Knowing that when the CPU spends more time in system mode, it is more than
likely overloaded and trying to reschedule priorities

e CPU bound process always get penalized while I/O process are rewarded

04 Introducing Virtual Memory

Virtual memory uses a disk as an extension of RAM so that the effective size of usable
memory grows correspondingly. The kernel will write the contents of a currently unused
block of memory to the hard disk so that the memory can be used for another purpose.
When the original contents are needed again, they are read back into memory. This is all
made completely transparent to the user; programs running under Linux only see the
larger amount of memory available and don't notice that parts of them reside on the disk
from time to time. Of course, reading and writing the hard disk is slower (on the order of
a thousand times slower) than using real memory, so the programs don't run as fast.
The part of the hard disk that is used as virtual memory is called the swap space.

Virtual Memory Pages

Virtual memory is divided into pages. Each virtual memory page on the X86 architecture
is 4KB. When the kernel writes memory to and from disk, it writes memory in pages. The
kernel writes memory pages to both the swap device and the file system.

Kernel Memory Paging

Memory paging is a normal activity not to be confused with memory swapping. Memory
paging is the process of syncing memory back to disk at normal intervals. Over time,
applications will grow to consume all of memory. At some point, the kernel must scan
memory and reclaim unused pages to be allocated to other applications.

The Page Frame Reclaim Algorithm (PFRA)

The PFRA is responsible for freeing memory. The PFRA selects which memory pages to
free by page type. Page types are listed below:

Unreclaimable - locked, kernel, reserved pages
Swappable - anonymous memory pages
Syncable - pages backed by a disk file
Discardable - static pages, discarded pages

All but the “unreclaimable” pages may be reclaimed by the PFRA.

There are two main functions in the PFRA. These include the kswapd kernel thread and
the “Low On Memory Reclaiming” function.

kswapd

The kswapd daemon is responsible for ensuring that memory stays free. It monitors the
pages_high and pages_low watermarks in the kernel. If the amount of free memory is
below pages_low, the kswapd process starts a scan to attempt to free 32 pages at a
time. It repeats this process until the amount of free memory is above the pages_high
watermark.

The kswapd thread performs the following actions:

o If the page is unmodified, it places the page on the free list.

o If the page is modified and backed by a filesystem, it writes the contents of the
page to disk.

e If the page is modified and not backed up by any filesystem (anonymous), it
writes the contents of the page to the swap device.

Kernel Paging with pdflush

The pdflush daemon is responsible for synchronizing any pages associated with a file on
a filesystem back to disk. In other words, when a file is modified in memory, the
pdflush daemon writes it back to disk.

The pdflush daemon starts synchronizing dirty pages back to the filesystem when 10%
of the pages in memory are dirty. This is due to a kernel tuning parameter called
vm.dirty_background_ratio.

The pdflush daemon works independently of the PFRA under most circumstances. When
the kernel invokes the LMR (Low on Memory Reclaiming) algorithm, the LMR specifically
forces pdflush to flush dirty pages in addition to other page freeing routines.

The vmstat utility reports on virtual memory usage in addition to CPU usage. The
following fields in the vmstat output are relevant to virtual memory: Swapd, Free, Buff,
Cache, So, Si, Bo, Bi (use man vmstat to read their description).

The following vmstat output demonstrates heavy utilization of virtual memory during an
I/0O application spike:

vmstat 3

procs memory swap io system cpu

r b swpd free buff cache si so bi bo in cs us sy id wa
3 2 809192 261556 79760 886880 416 0 8244 751 426 863 17 3 6 175
0 3 809188 194916 79820 952900 307 0 21745 1005 1189 2590 34 6 12 48
0 3 809188 162212 79840 988920 95 0 12107 0 1801 2633 2 2 3 94
1 3 809268 88756 79924 1061424 260 28 18377 113 1142 1684 3 5 3 88
1 2 826284 17608 71240 1144180 100 6140 25839 16380 1528 1179 19 9 12 61
2 1 854780 17688 34140 1208980 1 9535 25557 30967 1764 2238 43 13 16 28
0 8 867528 17588 32332 1226392 31 4384 16524 27808 1490 1634 41 10 7 43
4 2 877372 17596 32372 1227532 213 3281 10912 3337 678 832 33 7 3 57
1 2 885980 17800 32408 1239160 204 2892 12347 12681 1033 882 40 12 2 46
5 2 900472 17980 32440 1253884 24 4851 17521 4856 934 1730 48 12 13 26
1 1 904404 17620 32492 1258928 15 1316 7647 15804 919 878 49 9 17 25
4 1 911192 17944 32540 1266724 37 2263 12907 3547 834 1421 47 14 20 20
1 1 9192%2 17876 31824 1275832 1 2745 16327 2747 617 1421 52 11 23 14
5 0 925216 17812 25008 1289320 12 1975 12760 3181 772 1254 50 10 21 19
0 5 932860 17736 21760 1300280 8 2556 15469 3873 825 1258 49 13 24 15

The following observations can be made based on this output:

A large amount of disk blocks are paged in (bi) from the filesystem. This is
evident in the fact that the cache of data in process address spaces (cache)
grows.

During this period, the amount of free memory (free) remains steady at 17MB
even though data is paging in from the disk to consume free RAM.

To maintain the free list, kswapd steals memory from the read/write buffers
(buff) and assigns it to the free list. This is evident in the gradual decrease of the
buffer cache (buff).

The kswapd process then writes dirty pages to the swap device (so). This is
evident in the fact that the amount of virtual memory utilized gradually increases
(swpd).

Go through Ex02 and Ex03

Conclusions on monitoring the virtual memory performance:

Ex

The less major page faults on a system, the better response times achieved as
the system is leveraging memory caches over disk caches.

Low amounts of free memory are a good sign that caches are effectively used
unless there are sustained writes to the swap device and disk.

If a system reports any sustained activity on the swap device, it means there is a
memory shortage on the system

00

Run vmstat on your machine with a 1 second delay between updates. Let it run
for approximately 10 seconds. Notice the CPU utilisation by looking at the id
column.

Run ex00.py script. Then run vmstat as before. What do you notice in this case?
Without opening ex00.py, is there anything you can deduce regarding the script?
Have a look inside ex00.py.

How would you get the system to be 100% utilised with the CPU no longer being
idle? Try it.

The vmstat utility provides a good low-overhead view of system performance. Since
vmstat is such a low-overhead tool, it is practical to have it running even on heavily
loaded servers when it is needed to monitor the system’s health.

Ex 01

e Open ex01.py. What does it do?

e Try running it firstly for a number up to 998, and then for any larger number.
What is the problem?

e Run ex01b.py instead, for a large number (e.g. 10,000). Use the vmstat
command to check the CPU usage. Try to explain what is happening.

Hint: Use the mpstat command to monitor each individual core. The mpstat
command provides the same CPU utilization statistics as vmstat, but mpstat
breaks the statistics out on a per processor basis.

e What do you think is causing this behaviour?

e Comment line 14 (the print call) and the run the script again noticing its
behaviour.

Run both ex00.py and ex01b.py simultaneously, and use vmstat and mpstat to
monitor what is going on.

Ex02

e Use the stress command to stress the RAM module using 2 processes, with each
about 300MiB in size (command: stress -m 2 --vm-bytes 300M).
Use the vmstat utility to see the effects on the memory and CPU.

e For stressing the RAM, the CPU also has to do a lot of work. And as a result, if the
used processes were more or equal to the available cores, then they will use
100% of your CPU power. Test this.

e Stressing both the CPU and memory in the same time and set a timeout (e.g.
stress -c 2 -m 2 -t 20s)

Read more about stress here: http://www.hecticgeek.com/2012/11/stress-test-
your-ubuntu-computer-with-stress/

Ex03

e Generate an array of random integers, having a length of 10,000,000. Write a
function for sorting this array without using built-in sorting functions.
Monitor the behaviour of the system, in terms of CPU and memory utilisation,
while running your code.

http://www.hecticgeek.com/2012/11/stress-test-your-ubuntu-computer-with-stress/
http://www.hecticgeek.com/2012/11/stress-test-your-ubuntu-computer-with-stress/

