

VoIP & SIP

Summary

- What is VoIP
- Real Time Protocol
- SIP
 - **←**Servers, proxies, registrars
 - **←NAT** traversal
 - **←**mobility
 - **←**Android support

Voice over IP (VoIP)

- Did you know that :
 - Most telephony today is transported with VoIP?
 - Most PBX-es installed use VoIP?
 - In Ethiopia, Oman VoIP use is a criminal offence?
 - Hangouts, Whatsapp, Skype, TeamSpeak, TeamViewer, Viber, Yahoo Mesg all use VoIP?

Seven Myths About VoIP

- 1. VoIP is free
- 2. The only difference between VoIP and regular telephony is the price
- 3. Quality of service isn't an issue nonadways, because there's plenty of bandwidth in the network
- 4. VoIP can't replace regular telephony, because it still can't guarantee quality of service
- 5. VoIP is just another data application
- 6. VoIP isn't secure
- 7. A Phone is a Phone is a Phone

What is VoIP?

- VoIP is an end-to-end architecture
 - Voice transported in IP packets
- Comparison with PSTN
 - Circuit switch vs. Packet switch
 - Latency
 - Dataplane, control plane
 - Mobility
- VoIP headsets
 - Physical, Software
 - Built into Android

Packet Encapsulation

Encapsulate 10-20ms of speech in a packet

IP	UDP	RTP	Voice
20	8	12	20-240

RTP, RTCP, RTSP

audio/video applications	signaling and control			streaming applications		
video, audio, CODECs	RTCP		SDP	CODECs		
RTP		SIP		RTSP		
UDP		TCP		UDP		
IP						

Packet Encapsulation

Realtime delivery

- Realtime app = maintain time relationship at receiver
 - Play in same order as original (sequence number)
 - Play time to reproduce original (time stamp)
 - Once decided p1, all packets have deadlines!

Jitter =
$$(r_{i-1})-(s_{i-1})$$

Realtime delivery

- What is jitter?
 - Packet delay variance = $(r_i-r_{i-1})-(s_i-s_{i-1})$
 - Negative jitter: late packet
 - Positive jitter: early packet
- How to shield listener from jitter?
 - Playout buffer (extra delay)

Dealing with jitter

Playout buffer = delay at receiver to smooth jitter

11.04.2017

Delay and jitter

11

Audio end-to-end delay components

playout buffer ADDS delay

Voice quality metrics

- Listening quality
- Conversational quality
- Network quality
 - Delay, loss, jitter
 - Delay limits
 - < 150ms acceptable</p>
 - ←< 400ms tolerable
 - ←> 400ms unacceptable
- Mean Opinion Score (MOS)
 - Excellent = 5, Good = 4, Fair = 3, Poor = 2
 - Functions derived using human listeners to assign MOS to a given (loss,delay) conversation¹

¹Cole, Rosenbluth "Voice over IP Performance Monitoring", http://ccr.sigcomm.org/archive/2001/apro1/ccr-200104-cole.pdf

voice codecs

Codec	bitrate	Framesize [ms]	codec Delay[ms]	MOS ideal cond.
G.711	64kbps	10, 20,30	25	4.1
G.729	8kbps	10, 20,30	15, 25,35	3.92
GSM-FR	14kbps	22.5	20	3.5
SILK (skype)	6-40Kbps	20	?	5

11.04.2017

MOS(delay, loss)

- Conditions: 25ms vocoder delay, 60ms playout buffer
- Used known MOS(delay,loss) functions to generate curves
- G.729 = high compression, less resilient to loss
- G.711 = needs more bandwidth, more loss resilient

Session Initiation Protocol (SIP)

• RFC 3261, RFC 3853, RFC 4320

- Sinnreich Ch 6
- Text based protocol, similar to HTTP, SMTP
- Locate user given email-style address
- Setup session
- negotiate call parameters
- Personal mobility: different terminal, same identifier
- SIP does not use RTP, a session does
- SDP (Session Description Protocol) info about call, encoding, ports

SIP components

- UAC: user-agent client (caller application)
- UAS: user-agent server: accept, redirect, refuse call
- redirect server: redirect requests
- proxy server: server + client
- registrar: track user locations
- user agent = UAC + UAS
- often combine registrar + (proxy or redirect server)

SIP in a nutshell

11.04.2017

SIP enabled IP network

11.04.2017

SIP-based Architecture

Example Call

- Bob signs up for the service from the web as "bob@ecse.rpi.edu"
- He registers from multiple phones
- Alice tries to reach Bob

INVITE ip:Bob.Wilson@ecse.rpi.edu

- sipd canonicalizes the destination to sip:bob@ecse.rpi.edu
- sipd rings both e*phone and sipc
- Bob accepts the call from sipc and starts talking

SIP Sessions

- "Session": exchange of data between an association of participants
- Users may move between endpoints
- Users may be addressable by multiple names
- Users may communicate in several different media
- SIP: enables internet endpoints to
 - Discover each other
 - Characterize the session
- Location infrastructure: proxy servers, invite/register...
 - Name mapping and redirection services
- Add/remove participants from session
- Add/remove media from session

SIP Capabilities

- <u>User location</u>: determination of the end system to be used for communication;
- User availability: determination of the willingness of the called party to engage in communications;
- User capabilities: determination of the media and media parameters to be used;
- <u>Session setup</u>: "ringing", establishment of session parameters at both called and calling party;
- <u>Session management:</u> including transfer and termination of sessions, modifying session parameters, and invoking services.

What SIP is not...

- SIP is not a vertically integrated communications system.
 - It is a component in a multimedia architecture.
- SIP does not provide services.
 - Rather, SIP provides primitives that can be used to implement different services.
 - For example, SIP can locate a user and deliver an opaque object to his current location.
- SIP does not offer conference control services
 - such as floor control or voting
 - SIP does not prescribe how a conference is to be managed.

SIP Structure

- 3 "layers", loosely coupled, fairly independent processing stages
- Lowest layer: syntax, encoding (augmented BNF)
- Second layer: transport layer.
 - Defines how a client sends requests and receives responses and how a server receives requests and sends responses over the network.
- Third layer: transaction layer.
 - A transaction is a request sent by a client transaction (using the transport layer) to a server transaction ...
 - ... along with all responses to that request sent from the server transaction back to the client.
 - The transaction layer handles application-layer retransmissions,
 matching of responses to requests, and application-layer timeouts
- The layer above the transaction layer is called the transaction user (TU).

SIP Design Choices

Transport protocol neutrality: run over reliable (TCP, SCTP) and unreliable (UDP) channels, with minimal assumptions

Request routing: direct (performance) or proxy-routed (control)

Separation signaling vs. media description: can add new applications or media types, SDP → SDPng

Extensibility: indicate and require proxy and UA capabilities

Proxy Server

1. INVITE sip:president@us.gov SIP/2.0 From: sip:tony@parliament.uk

2. INVITE sip:dcheney@wh SIP/2.0

From: sip:tony@parliament.uk

3. SIP/2.0 200 ok
From: sip:dcheney@wh

Location Server

1 & 5

tony@parliament.uk

4

Proxy server

4. SIP/2.0 100 OK

From: sip:president@us.gov

5. ACK sip:president@us.gov SIP/2.0

From: sip:tony@parliament.uk

6. ACK sip:dcheney@wh SIP/2.0 From: sip:tony@parliament.uk

dcheney@wh

3

Redirect Server

- From: sip:tony@parliament.uk

 2 SIP/2 0 320 Moved temporarily
- 2. SIP/2.0 320 Moved temporarily Contact: sip:dcheney@wh.us.gov
- 3. ACK sip:president@us.gov From: sip:tony@parliament.uk

- 4. INVITE sip:dcheney@wh.us.gov From: tony@parliament.uk
- 5. SIP/2.0 200 OK To: tony@parliament.uk

6. ACK sip:dcheney@wh.us.gov From: sip:tony@parliament.uk

SIP Call Signaling

PSTN to IP Call

IP to PSTN Call

Traditional voice mail system

Bob can listen to his voice mails by dialing some number.

SIP-based Voicemail Architecture

The voice mail server registers with the SIP proxy, sipd

Alice calls bob@office.com through SIP proxy.

SIP proxy forks the request to Bob's phone as well as to a voicemail server.

Voicemail Architecture

Bob

IETF SIP Architecture

IETF SIP Architecture Tour

IETF SIP Architecture Tour

Components of the SIP protocol suite:

- SIP = almost all signaling, optional services, etc.
- SDP = negotiation/capabilities
- DNS = address translation
- RSVP = QoS bandwidth guarantee

SIP for instant messaging: IM (RFC 3428)

- IM: transfer of (short) messages in near real-time, for conversational mode.
 - Current IM: proprietary, server-based and linked to buddy lists etc
- MESSAGE method: inherits SIP's request routing and security features
 - Message content as MIME body parts
 - Sent in the context of some SIP dialog
 - (note: slightly different from pager mode: asynchronous)
 - Sent over TCP (or congestion controlled transports): lots of messaging volumes...
- Allows IM applications to potentially interoperate and also provides SIP-based integration with other multimedia streams.

SIP compression (RFC 3486)

- Cannot use DNS SRV and NAPTR techniques: non-scalable (only useful for specifying transport protocol options)
- Use an application-level exchange to specify compression of signaling info
 - sip:alice@atlanta.com;comp=sigcomp
 - Via: SIP/2.0/UDP
 server1.foo.com:5060;branch=z9hG4bK87a7;comp=sigcomp
- SIGCOMP is the compression protocol

Device Configuration

SIP Scaling Issues

- SIP signaling primarily handled by SIP proxies, with associated registrars and location servers
- critical common infrastructure for IM/presence, VoIP, conferences, mobile networks, . . .
- SIP proxies do not switch voice, but
 - route calls mobility
 - implement policies
 - programmable logic
- far higher variability than classical switches: execute subscriber-defined code during call signaling:
 - sip-cgi scripts (similar to web cgi-bin scripts)
 - CPL scripts XML-based call logic

SIP Scaling (contd)

Some metrics:

- BHCA 750,000 to 2.5 million busy hour call attempts for large class-5 switches = 3.6 ms/call
- AT&T: 280 million calls a day = 0.3 ms/call
- Yahoo: 780 million page views/day
- AOL: 110 million emails/day
- AOL: 500 million IM/day
- web server: about 1,500 to 3,000 static requests/second

SIP Load Characteristics:

- not CPU-bound \rightarrow delay $\neq 1/\text{throughput}$
- low byte volume is easy to physically distribute for redundancy and load distribution
- servers can easily be shared among domains