

VoIP &SIP

Summary

- What is VoIP
- Real Time Protocol
- SIP
 - Servers, proxies, registrars
 - ONAT traversal
 - omobility
 - Android support

Voice over IP (VoIP)

- Did you know that:
 - Most telephony today is transported with VoIP?
 - Most PBX-es installed use VoIP?
 - In Ethiopia, Oman VoIP use is a criminal offence?
 - Hangouts, Whatsapp, Skype, TeamSpeak, TeamViewer, Viber, Yahoo Mesg all use VoIP?

Seven Myths About VoIP

- 1. VoIP is free
- 2. The only difference between VoIP and regular telephony is the price
- 3. Quality of service isn't an issue nonadways, because there's plenty of bandwidth in the network
- 4. VoIP can't replace regular telephony, because it still can't guarantee quality of service
- 5. VoIP is just another data application
- 6. VoIP isn't secure
- 7. A Phone is a Phone is a Phone

What is VoIP?

- VoIP is an end-to-end architecture
 - Voice transported in IP packets
- Comparison with PSTN
 - Circuit switch vs. Packet switch
 - Latency
 - Dataplane, control plane
 - Mobility
- VoIP headsets
 - Physical, Software
 - Built into Android

18.05.2017

Packet Encapsulation

Encapsulate 10-20ms of speech in a packet

RTP, RTCP, RTSP

audio/video applications	signaling and control			streaming applications			
video, audio, CODECs	RTCP	SDP CODECs					
RTP		SIP		RTSP			
UDP			TCP		UDP		
IP							

Packet Encapsulation

Realtime delivery

- Realtime app = maintain time relationship at receiver
 - Play in same order as original (sequence number)
 - Play time to reproduce original (time stamp)
 - Once decided p1, all packets have deadlines!

Jitter =
$$(r_{i-1})-(s_{i-1})$$

Realtime delivery

- What is jitter?
 - Packet delay variance = $(r_i-r_{i-1})-(s_i-s_{i-1})$
 - Negative jitter: late packet
 - Positive jitter: early packet
- How to shield listener from jitter?
 - Playout buffer (extra delay)

Dealing with jitter

Playout buffer = delay at receiver to smooth jitter

18.05.2017

Delay and jitter

Audio end-to-end delay components

playout buffer ADDS delay

Voice quality metrics

- Listening quality
- Conversational quality
- Network quality
 - Delay, loss, jitter
 - Delay limits
 - < 150ms acceptable</p>
 - ○< 400ms tolerable
 - > 400ms unacceptable
- Mean Opinion Score (MOS)
 - Excellent = 5, Good = 4, Fair = 3, Poor = 2
 - Functions derived using human listeners to assign MOS to a given (loss,delay) conversation¹

¹Cole, Rosenbluth "Voice over IP Performance Monitoring", http://ccr.sigcomm.org/archive/2001/apro1/ccr-200104-cole.pdf

voice codecs

- Voice coder-decoder
- Needs time &CPU to signal process/compress
- Open or closed source

Codec	bitrate	Framesize [ms]	codec Delay[ms]	MOS ideal cond.
G.711	64kbps	10, 20,30	25	4.1
G.729	8kbps	10, 20,30	15, 25,35	3.92
GSM-FR	14kbps	22.5	20	3.5
SILK (skype)	6-40Kbps	20	?	5

18.05.2017

MOS(delay, loss)

- Conditions: 25ms vocoder delay, 60ms playout buffer
- Used known MOS(delay,loss) functions to generate curves
- G.729 = high compression, less resilient to loss
- G.711 = needs more bandwidth, more loss resilient

Session Initiation Protocol (SIP)

RFC 3261

- Sinnreich Ch 6
- Text based protocol, similar to HTTP, SMTP
- Locate user given email-style address
- Setup session
- negotiate call parameters
- Personal mobility:different terminal, same identifier
- SIP does not use RTP, a session does
- SDP (Session Description Protocol) info about call, encoding, ports
- RFC 5411 "A Hitchhiker's Guide to the Session Initiation Protocol (SIP)" – more than 100 RFCs

SIP components

- user-agent
 - UAC: client initiate requests
 - UAS: server generates response: accept, redirect, refuse call
- redirect server: redirect requests
- proxy server: server + client
- registrar server: track user locations
- often combined: registrar + (proxy or redirect server)
 - admission control
 - address translation/forwarding
 - NAT traversal

IETF SIP Architecture

IETF SIP Architecture Tour

IETF SIP Architecture Tour

Components of the SIP protocol suite:

- SIP = almost all signaling, optional services, etc.
- SDP = negotiation/capabilities
- DNS = address translation
- RSVP = QoS bandwidth guarantee

SIP in a nutshell

18.05.2017

SIP enabled IP network

18.05.2017

SIP Call Signaling

Example SIP-based Architecture

Example Call

- Bob signs up for the service from the web as "bob@ecse.rpi.edu"
- He registers from multiple phones
- Alice tries to reach Bob

INVITEsip:Bob.Wilson@ecse.rpi.edu

- sipd canonicalizes the destination to sip:bob@ecse.rpi.edu
- sipd rings both e*phone and sipc
- Bob accepts the call from sipc and starts talking

SIP Sessions

- Users may move between endpoints
- Users may be addressable by multiple names
- Users may communicate in several different media
- SIP: enables internet endpoints to
 - Discover each other
 - Characterize the session
- Location infrastructure: proxy servers, invite/register...
 - Name mapping and redirection services
- Add/remove participants from session
- Add/remove media from session

SIP Capabilities

- <u>User location</u>: determination of the end system to be used for communication;
- User availability: determination of the willingness of the called party to engage in communications;
- User capabilities: determination of the media and media parameters to be used;
- <u>Session setup</u>: "ringing", establishment of session parameters at both called and calling party;
- <u>Session management:</u> including transfer and termination of sessions, modifying session parameters, and invoking services.

What SIP is not...

- SIP is not a vertically integrated communications system.
 - It is a component in a multimedia architecture.
- SIP does not provide services.
 - Rather, SIP provides primitives that can be used to implement different services.
 - For example, SIP can locate a user and deliver an opaque object to his current location.
- SIP does not offer conference control services
 - such as floor control or voting
 - SIP does not prescribe how a conference is to be managed.

Example with Proxy Server

1. INVITEsip:president@us.gov SIP/2.0 From: sip:tony@parliament.uk

2. INVITEsip:dcheney@wh SIP/2.0 From: sip:tony@parliament.uk

6. ACK sip:dcheney@wh SIP/2.0 From: sip:tony@parliament.uk

From: sip:tony@parliament.uk

Example with Redirect Server

- From: sip:tony@parliament.uk
- 2. SIP/2.0 320 Moved temporarily Contact: sip:dcheney@wh.us.gov
- 3. ACK sip:president@us.gov From: sip:tony@parliament.uk

- 4. INVITE sip:dcheney@wh.us.gov From: tony@parliament.uk
- 5. SIP/2.0 200 OK To: tony@parliament.uk

6. ACK sip:dcheney@wh.us.gov From: sip:tony@parliament.uk

Example: PSTN to IP Call

Example: IP to PSTN Call

