

Mobilitate la nivel rețea

• internet: Mobile IP

• local: Zeroconf

Motivation for Mobile IP

- Routing
 - IP destination address, network prefix => physical subnet
 - change of physical subnet => change of IP address
 - ←or needs special entries in the routing tables
- Specific routes to end-systems?
 - change of all routing tables toward the right destination
 - does not scale with
 - number of mobile hosts
 - frequent changes in the location
 - security problems

Motivation for Mobile IP

- Changing the IP-address?
 - Adjust host IP address depending on the current location
 - hard to find a mobile system, DNS updates take too long
 - TCP connections break
 - security problems
- IP address is both
 - 1. location identifier
 - 2. host identity

Mobile IPv4 2002->3220->3344->4721->5944

Transparency

- mobile end-systems keep their IP address
- continuation of communication after interruption of link
- point of connection to the fixed network can be changed

Compatibility (wished)

- support of the same layer 2 protocols as IP
- no changes to current end-systems and routers
- mobile can communicate with fixed systems

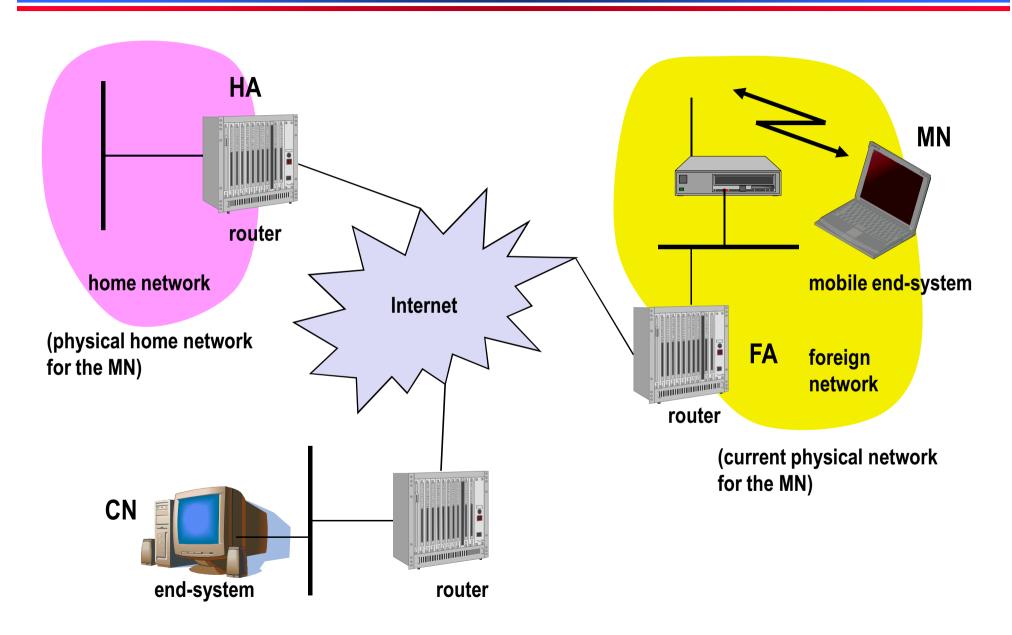
Security

authentication of all registration messages

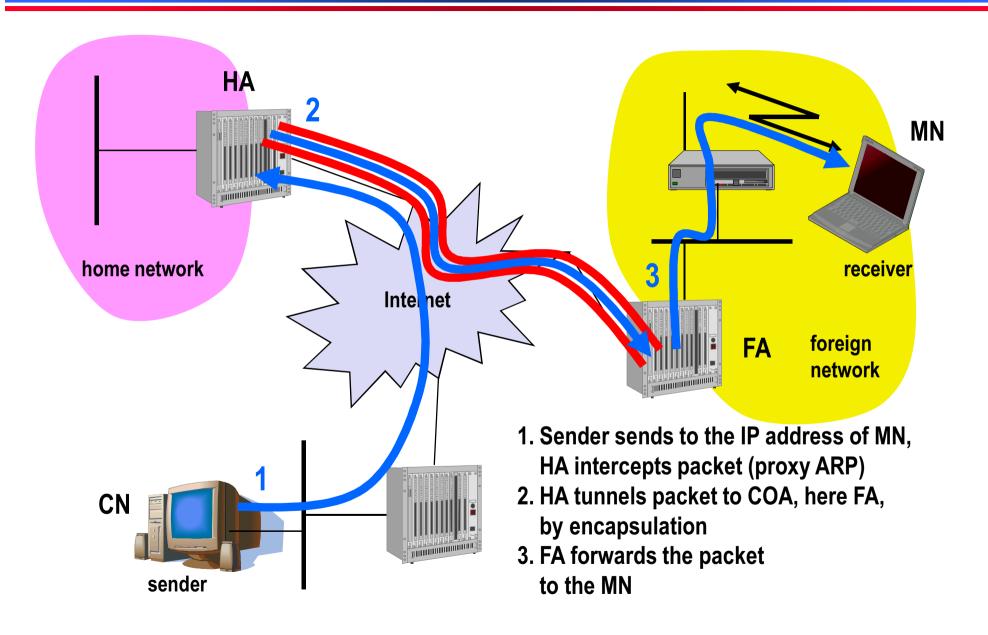
Efficiency and scalability

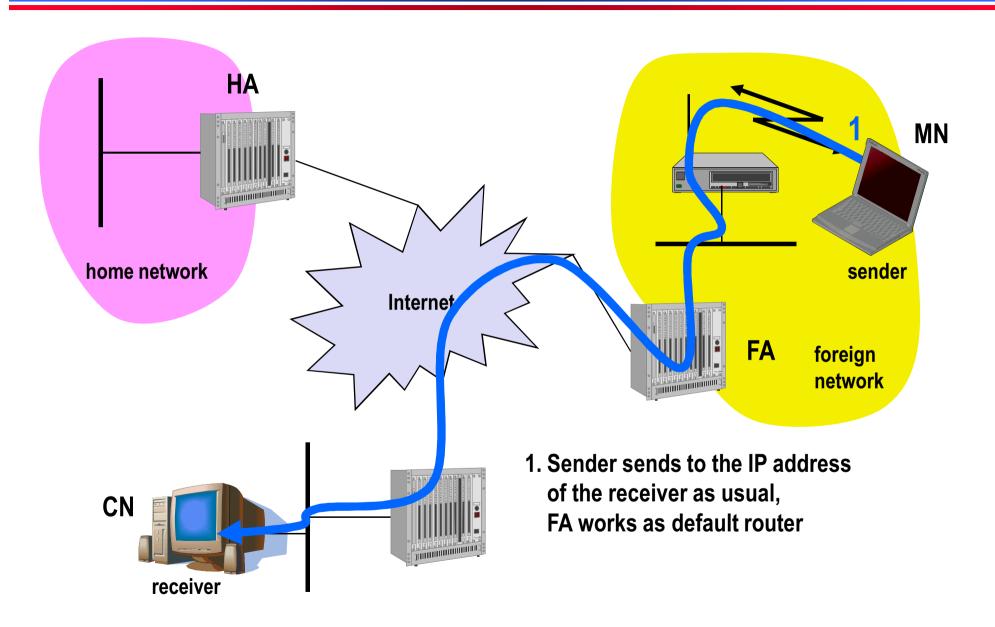
- little additional messages to the mobile system required
- world-wide support

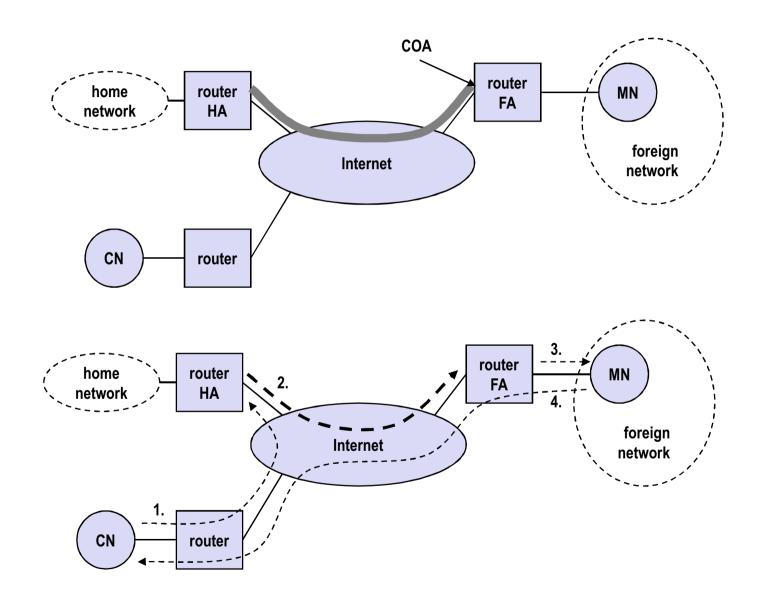
Terminology


- Mobile Node (MN)
 - system (node) that can change the point of connection to the network without changing its IP address

- Home Agent (HA)
 - system in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP datagrams to the COA
- Foreign Agent (FA)
 - system in the current foreign network of the MN, typically a router
 - forwards the tunneled datagrams to the MN, typically also the default router for the MN
- Care-of Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view
 - can be chosen, e.g., via DHCP
- Correspondent Node (CN)
 - communication partner


Example network

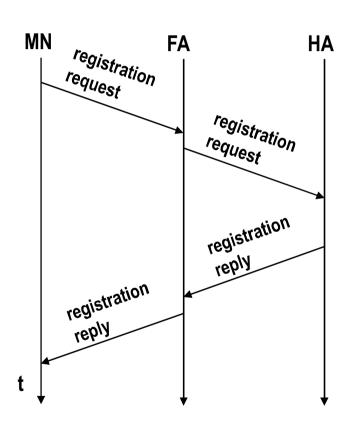

Data transfer to the mobile system

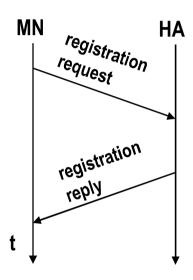

Data transfer from the mobile system

Overview

Network integration

Agent Advertisement


- HA and FA periodically send advertisement messages into their physical subnets
- MN listens to these messages and detects, if it is in the home or a foreign network (standard case for home network)
- MN reads a COA from the FA advertisement messages
- Registration (always limited lifetime!)
 - MN signals COA to the HA via the FA, HA acknowledges via FA to MN
 - these actions have to be secured by authentication


Advertisement

- HA advertises the IP address of the MN (as for fixed systems), i.e. standard routing information
- routers adjust their entries, these are stable for a longer time (HA responsible for a MN over a longer period of time)
- packets to the MN are sent to the HA,
- independent of changes in COA/FA

Registration

Mobile IP registration request

0		7	8		15	16	23	24	3	31
	type = 1		SBD	MG	r T x		lifet	ime		
home address										
home agent										
COA										
identification										
extensions										

S: simultaneous bindings

B: broadcast datagrams

D: decapsulation by MN

M mininal encapsulation

G: GRE encapsulation

r: =0, ignored

T: reverse tunneling requested

x: =0, ignored

Mobile IP registration reply

0	7	8	1	5	16		31	
ty	pe = 3		code			lifetime		
home address								
home agent								
identification								
	extensions							

Example codes:

registration successful

0 registration accepted

1 registration accepted, but simultaneous mobility bindings unsupported

registration denied by FA

65 administratively prohibited

66 insufficient resources

67 mobile node failed authentication

68 home agent failed authentication

69 requested Lifetime too long

registration denied by HA

129 administratively prohibited

131 mobile node failed authentication

133 registration Identification mismatch

135 too many simultaneous mobility bindings

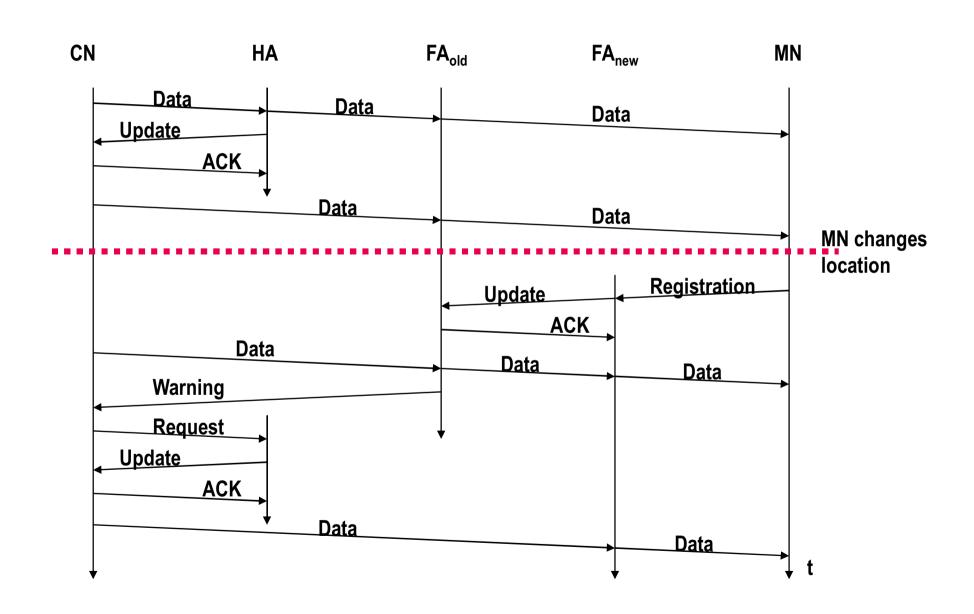
Encapsulation

	original IP header	original data		
new IP header	new data			
Г I L				
outer header	inner header	original data		

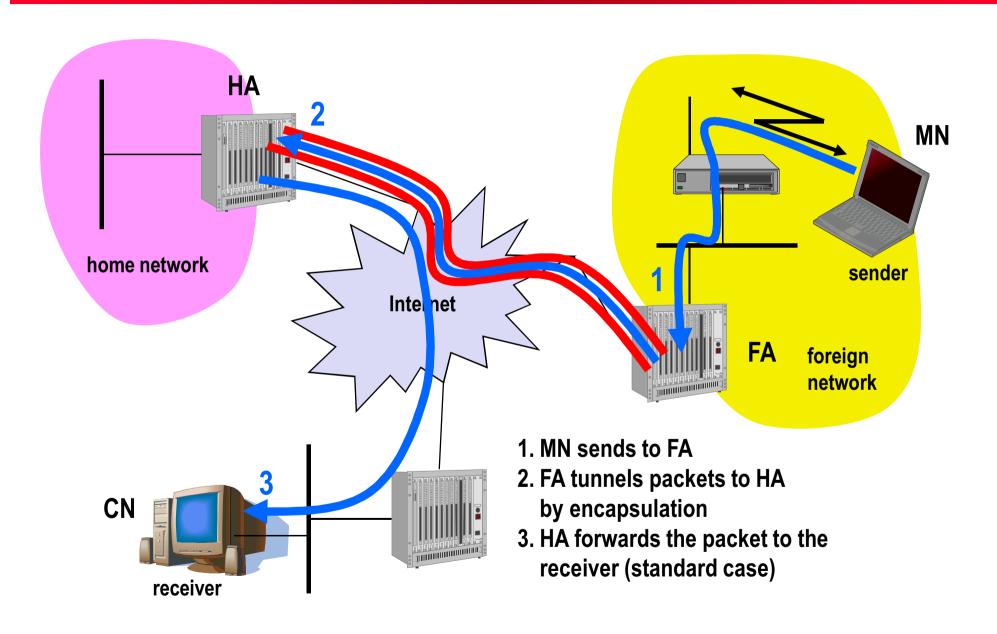
Encapsulation I

- Encapsulation of one packet into another as payload
 - e.g. IPv6 in IPv4 (6Bone), Multicast in Unicast (Mbone)
 - here: e.g. IP-in-IP-encapsulation, minimal encapsulation or GRE (Generic Record Encapsulation)
- IP-in-IP-encapsulation (mandatory, RFC 2003)
 - tunnel between HA and COA

ver.	IHL	DS (TOS)	length					
	IP ident	ification	flags	fragment offset				
T	TTL IP-			IP checksum				
	IP address of HA							
	Care-of address COA							
ver.	ver. IHL DS (TOS)		length					
	IP identification			flags fragment offset				
T	TTL lay. 4 prot.		IP checksum					
IP address of CN								
IP address of MN								
TCP/UDP/ payload								


Optimization of packet forwarding

- Problem: Triangular Routing
 - sender sends all packets via HA to MN
 - higher latency and network load
- "Solutions"
 - sender learns the current location of MN
 - direct tunneling to this location
 - CN becomes nonstandard Ω - HA informs a sender about the location
 - big security problems!
- Change of FA
 - packets on-the-fly during the change can be lost
 - new FA informs old FA to avoid packet loss, old FA now forwards remaining packets to new FA
 - this information also enables the old FA to release resources for the MN


Change of foreign agent

Reverse tunneling (RFC 3024, 2344)

Mobile IP with reverse tunneling

- Router accept often only "topological correct" addresses (firewall!)
 - a packet from the MN encapsulated by the FA is now topological correct
 - furthermore multicast and TTL problems solved (TTL in the home network correct, but MN is to far away from the receiver)
- Reverse tunneling does not solve
 - problems with firewalls, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking)
 - optimization of data paths, i.e. packets will be forwarded through the tunnel via the HA to a sender (double triangular routing)
- The standard is backwards compatible
 - the extensions can be implemented easily and cooperate with current implementations without these extensions
 - Agent Advertisements can carry requests for reverse tunneling

Problems with mobile IP

Security

- authentication with FA problematic, for the FA typically belongs to another organization
- no protocol for key management and key distribution has been standardized in the Internet
- patent and export restrictions

Firewalls

- typically mobile IP cannot be used together with firewalls, special setups are needed (such as reverse tunneling)
- Security, firewalls, QoS etc. are topics of research and discussions
- requires changes of MN
- NAT

Mobile IP usage

- Not in original form
- PMIPv6 = Proxy MIP
 - Proxy: client doesn't run MIP, but a proxy
 - client@SGSN, FA/CoA@GGSN, HA@somewhere in CN
 - 3G (UMTS) and 4G(LTE, WiMAX) networks
 - Maintain mobility in core network
 - Support in many CISCO boxes: ASR, ISR, WLC
 - Mobile offloading
 - Large WiFi deployments

Mobile IP summary

- IP = the narrow waist of the Internet
- hard to upgrade
- basic mobility solution
 - tunneling IP in IP
 - triangle routing
 - Double triangle routing
- Deployment problems
 - compatibility, security, NAT
- MIP not used in original form
 - Setups where HA, FA, clients are under control

Zeroconf

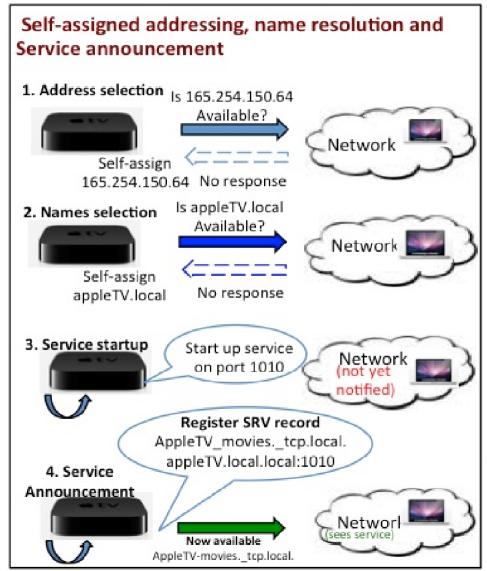
"You can't get your work done because of a problem you don't care about with a computer you've never heard of in a building you've never been to" (S. Cheshire)

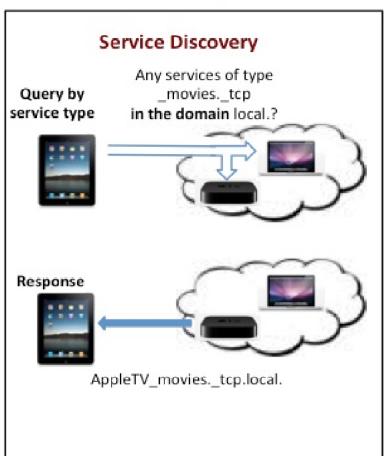
- 1) Address assignment
 - What IP address do I have?
- 2) DNS without a server
 - What is my name?
 - mDNS (Multicast DNS)
- 3) Service location discovery
 - What network services are available?

Zeroconf

requirement	Linux, BSD Avahi	OSX <i>Bonjour</i>	Windows
Automatic IP allocation	Link-local	Link-local	Link-local
Name resolution	mDNS	mDNS	LLMNR
Service discovery	DNS-SD	DNS-SD	SSDP(UPnP)

Zeroconf hardware, software




- Apple
 - AppleTV, AirPort, (AirPlay protocol), AirDrop, iTunes, etc
- Google
 - ∠ Chromecast
- Various vendors
 - ∠ Printers, NAS, network video players, projectors, TVs

Example

Self-assigned addressing, Name resolution and service publication

Obtain an IP address

- Manual assignment
 - ✓ Netmask
 - ∠ Router
 - Broadcast domain
 - Conflict resolution
- ✓ DHCP
 - Conflict resolution
- Link-local (self assigned)

Link-local Address Assignment

- IPv6
 - Link-Local FE80::/16
 - Duplication Address Discovery (DAD)
- IPv4
 - **169.254.0.0/16**
 - first and last 254 addresses are reserved
 - Random based address selection; seed=MAC address
 - ARP-based duplicate discovery
 - Conflict probability for 1300 hosts
 - •98% to succeed in first try
 - •99.96% to succeed in two tries

Claim a local address

Time	Source	Destination	Protocol.	Info
3.703964	dimsumthinking.local	Broadcast	ARP	Who has 169.254.187.245? Tell 0.0.0.0
3.983703	foo,local	Broadcast	ARP	Who has 169.254.186.86? Tell 0.0.0.0
4.004198	dimsumthinking.local	Broadcast	ARP	Who has 169.254.187.245? Tell 0.0.0.0
4.283867	foo.local	Broadcast	ARP	Who has 169.254.186.86? Tell 0.0.0.0
4.304479	dimsumthinking,local	Broadcast	ARP	Who has 169.254.187.245? Tell 0.0.0.0
4.584088	foo.local	Broadcast	ARP	Who has 169.254.186.86? Tell 0.0.0.0
4.884300	foo.local	Broadcast	ARP	Who has 169,254,186,86? Tell 0,0,0,0
4,905167	dimsumthinking,local	Broadcast	ARP	Who has 169,254,187,245? Tell 169,254,187,245
5.184522	foo.local	Broadcast	ARP	Who has 169.254.186.86? Tell 169.254.186.86
5,205780	dimsumthinking,local	Broadcast	ARP	Who has 169.254.187.245? Tell 169.254.187.245
5.485642	foo.local	Broadcast	ARP	Who has 169,254,186,86? Tell 169,254,186,86
26,260885	dimsumthinking.local	Broadcast	ARP	Who has 169.254.186.86? Tell 169.254.187.245
26,260929	foo.local	Broadcast	ARP	169.254.186.86 is at 00:03:93:ef:c4:8c

time 3.7-4.8: each machine tries and address

time 4.9-5.5: machines claim IP addresses

time 26.2: actual ARP query, response

Link-Local Issues

Maintenance

- Defending your address
- –Late conflicts: when someone claims your IP, send a single ARP in defense

Multiple interfaces

-broadcast on all local interfaces

Address selection

- —try to prefer routable addresses
- -stop using local address when a global one is available
- -local addresses are not globally reachable

Zeroconf

- 1) Address assignment
 - What IP address do I have?
- 2) DNS without a server
 - What is my name?
 - mDNS (Multicast DNS)
- 3) Service location discovery
 - What network services are available?

We have an address -now what?

Communication via link-local is a pain

- —Need to look up raw addresses
- Need to type addresses in directly

DNS would be nice, but

- —there is no DNS server available, or
- —if there is a server I don't know where it is

Multicast

IP Multicast addresses

Ethernet Multicast addresses

Hosts "join" multicast groups

- —have ethernet card listen to multicast addresses
- -respond to IP multicast
- —tell routers that you want to participate

Multicast cont.

On a local link multicast is very efficient

- —convert the layer 2 multicast
- —does not disrupt non-participants

On the global internet

- -Multicast should be efficient for one-to-many delivery
- —Routers have to keep track of participants = complexity and "state" in the router
- Efficiency looses to simplicity

Local Name Discovery

Has long been used on Mac OS, Windows, and Novell

- -NETBIOS Names
- —AppleTalk

Broadcast-based name announcements "Chatty" Protocols

Multicast DNS (mDNS)

Issue an (almost) standard DNS query
Target is <u>not a DNS server</u> but a multicast address

- -224.0.0.251 for IPv4
- -FF02::FB for IPv6
- -to/from port 5353 (standard DNS is 53)
- -DNS packet structure maintained
- -DNS packet semantics slightly change

mDNS Implementation

Client wants to resolve a name

—Multicast the query

One or more members of the multicast group reply

- —One reply for unique information (name to address)
- —Many replies for shared information (services)

Replies are multicast to allow all clients to use the answer

mDNS queries

- 1)One-shot with single answers
 - ∠ Example: http://mylaptop.local triggers 224.0.0.251:5353
- 2)One-shot with multiple answers
 - ∠ wait for multiple answers
 - ∠ on retransmission include answers so far
- 3)Ongoing
 - ∠ Repeat w exponential backoff
 - ∠ New clients send gratuituous responses
 - ∠ Known answers in query
 - ∠ Responses are multicast

mDNS Implementation

- Windows/OSX/IOS/Linux
- Names in the ".local." domain are resolved by mDNS
- No hierarchy is implied or allowed
- ∠ There are no NS or SOA "records"
- ∠ Replies must have TTL= 255
 - Protect against attackers injecting malicious answers from outside the network

Name/Content Assignment

DNS query type A mDNS Query type T_ANY

- returns <u>all</u> matching records
- ∠ If no conflict, repeat after 250ms
- ∠ After 750ms (3 queries), name is unique

Name/Content Assignment

Unique information, e.g. host names

- -Host creates a name it wants to use
- —Issues a query to see if there is a conflict
- -Host who got the name first "wins"
- —In a race condition (two hosts start using the same name at the same time) the one with the lower address "wins"

Shared information

Host responds to queries as appropriate

Zeroconf

- 1) Address assignment
 - What IP address do I have?
- 2) DNS without a server
 - What is my name?
 - mDNS (Multicast DNS)
- 3) Service location discovery

What network services are available?

- 1. Publication: advertising a service
- 2. Discovery: browsing for available services
- 3. Resolution: translating service instance names to addresses and port numbers for use

Service discovery requires a central aggregation server

DNS already has one: it's called a DNS server.

Service discovery requires a service registration protocol

• DNS already has one: it's called DNS Dynamic Update.

Service discovery requires a query protocol

DNS already has one: it's called DNS.

Service discovery requires security mechanisms

DNS already has security mechanisms: they're called DNSSEC.

Service discovery requires a multicast mode for ad-hoc networks

 Zeroconf environments already require a multicast-based, DNSlike name lookup protocol for mapping hostnames to addresses, so it makes sense to let one multicast-based protocol do both jobs.

1. Publication: advertising a service

Create SRV records

```
<Instance Name>.<Service Type>.<Domain> → <Host> <Port>
PrintsAlot. printer. tcp.local. → blackhawk.local. 515
```

Create PTR records

Create TXT records

```
Additional info, not mandatory (example: lpt queue, user AFK, game map name, etc)
```

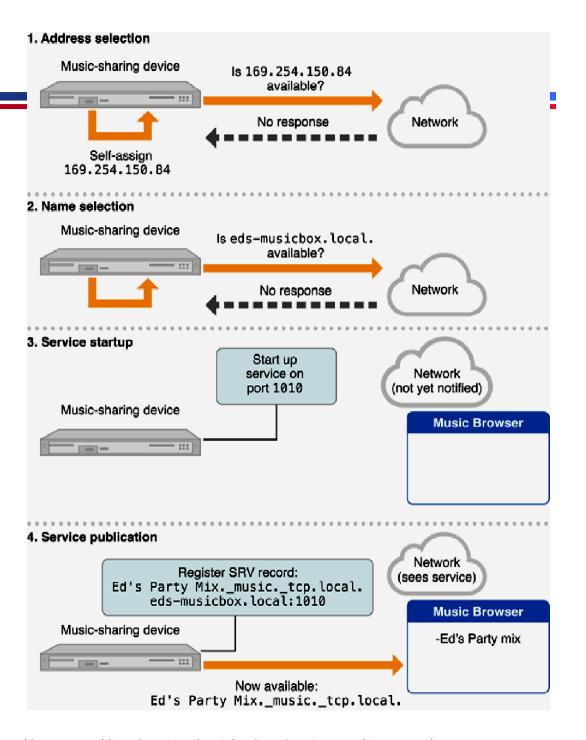

- Browse for services, not devices
- ∠ DNS SRV records [RFC 2782]:
- "_http._tcp.local." lists all address/port combinations for http servers reachable by TCP in the local. domain
 - DNS-SD adds one level of indirection to allow a named list of services that can be presented to the user

ublication: advertising a service

- 2. Discovery: browsing for available services
 - 2.1 Send PTR query
 - 2.2 Send SRV query
 - 2.3 discriminate with TXT record if necessary

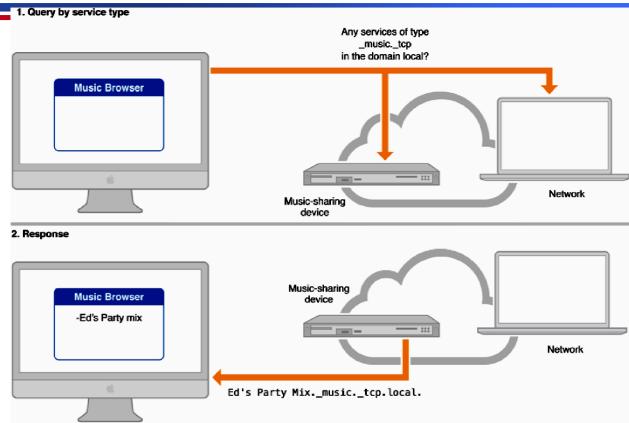
DNS-SD

- Query for PTR records (instead of SRV)
 - ∠ query for PTR with name "_ipp._tcp.local."
 - ∠ get a list of <instance>.<service>.<domain> records
 - "ColorPrinter. _ipp._tcp.local." "SlowPrinter. _ipp._tcp.local."
- Give the user a list of options
 - key=value in TXT record
- Issue SRV (and TXT) query for the desired instance
- ∠ Late binding



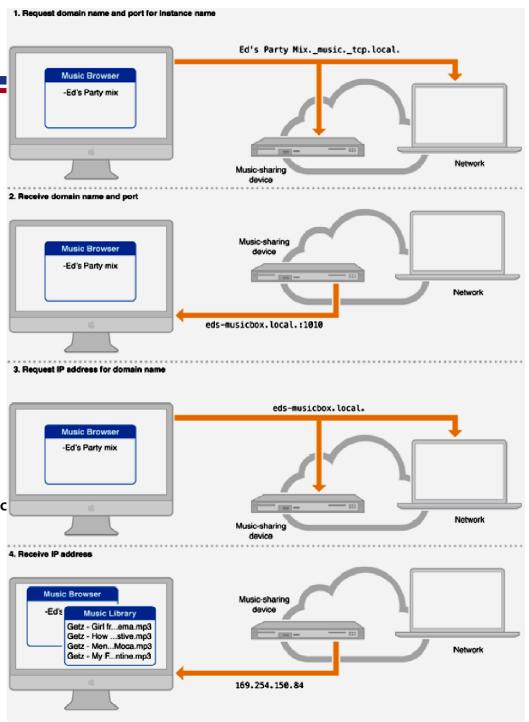
- 3. Resolution: translating service instance names to addresses and port numbers for use
 - query for SRV record
 - query for IP:port

DNS-SD example


PUBLICATION

- 1. Client randomly selects 169.254.150.84/16
 - Advertises, claims address
- 2. mDNS responder claims name eds-musicbox.local.
- 3. device selects free port, start service
- Publishes service _music._tcp, under the name "Ed's Party Mix", creates
 - SRV record named Ed's Party Mix._music._tcp.local. that points to eds-musicbox.local. on TCP port 1010
 - PTR record named _music._tcp.local. that points to the Ed's Party Mix._music._tcp.local. service.

DNS-SD example


DISCOVERY

- 1. App queries for PTR record _music._tcp.local.
 - ∠ IP Multicast to 224.0.0.251:5353
- 2. mDNS responders on devices answer with service instance names
 - Ed's Party Mix._music._tcp.local.
- App prompts the user with the instance list

DNS-SD example

RESOLUTION

- 1 App DNS lookup for a SRV record with the name of the servic forEd's Party Mix._music._tcp.local.
- 2 Receive instance location eds-musicbox.local., 1010
- 3 Resolve name by multicast: 169.254.150.84
- 4 Connect to 169.254.150.84:1010, use service

Other topics

Apple

- Bonjour Sleep Proxy: mDNS + magic packet
 - (file share, printer share, ssh)
- Bonjour gateways, VLAN separation
- Problems in enterprise networks

http://www.networkworld.com/article/2161302/lan-wan/apple-seeks-standard-to-appease-angry-university-net-managers.html

Microsoft

- LLMNR (Link-Local Multicast Name Resolution)
- -UPnP
 - Simple Service Discovery Protocol (SSDP)
 - Windows Internet Naming Service (WINS)