Sumar

- Android
- Noțiuni generale despre radio
- Accesul la mediu
 - SDMA, FDMA, TDMA, CDMA
 - CSMA/CA
- Sisteme de comunicații mobile
 - 2G: GSM
 - 3G: UMTS
 - 4G: LTE
- WiFi
 - 802.11a/b/g/n/ac/ad
 - Infrastructuri

- Mobile IP
 - Locator/Identifier split
 - Routing
- Mobilitate nivel transport
 - I-TCP, middlebox-uri
- VolP
 - QoS, SIP
- Descoperire servicii
 - zeroconf, mDNS, DNS-SD
- Servicii de locație
 - Exterior: GPS, CellID
 - Interior: WiFi

Noțiuni generale despre radio

- Unități de măsură
- Atenuare
- Nivelul fizic
- Codare, modulare, MCS
- Nivelul legătură de date
- Detecție, corecție
- FEC, ARQ, HARQ

Unități de măsură

Bandă

Fizic: MHz

Rețea: Mbps = 10⁶ bps

Atenuare dB

 $1 dB = 10 log_{10} (P_1/P_0)$

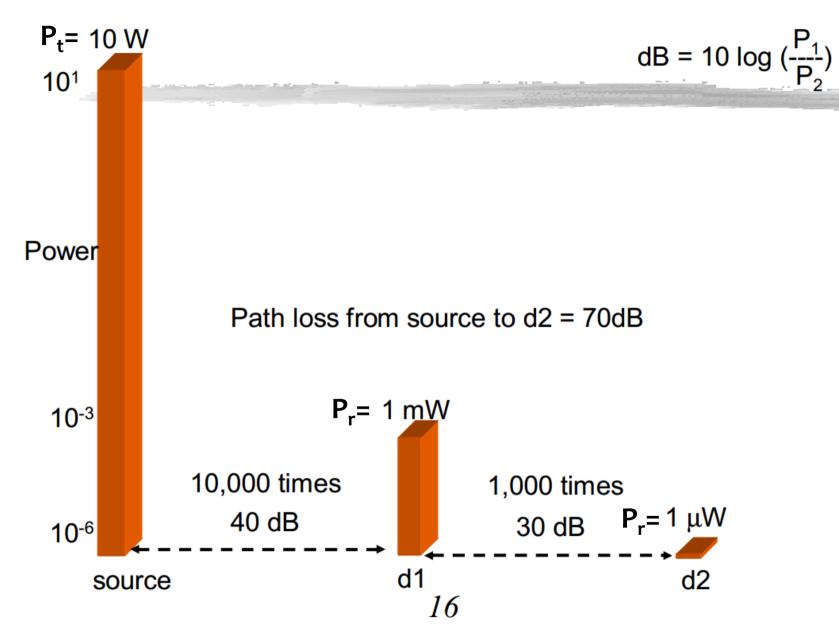
Putere mW, dBm

1W = 1000mW = 30dBm

1mW = odBm

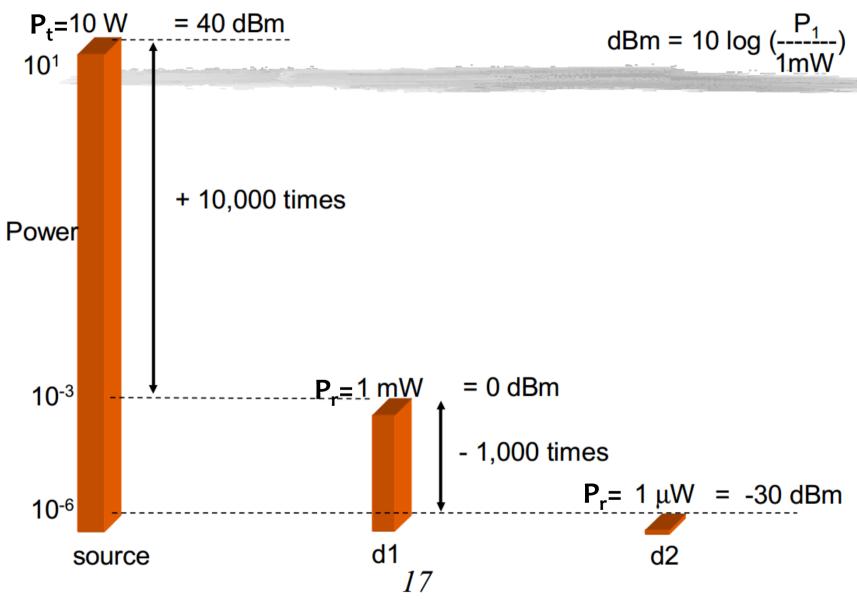
 $P[dBm] = 10 log_{10} P[mW]$

 $P[mW] = 10^{P[dBm]/10}$


3dB înseamnă $P_1 = 2P_0$

10dB înseamnă $P_1 = 10P_0$

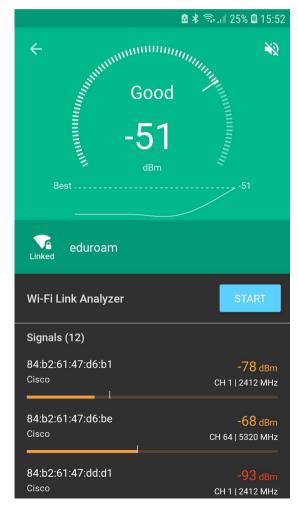
mW	dBm
0	-∞
0.0000000001	-100
0.00000001	-90
0.00001	-50
0.01	-20
0.1	-10
1	О
2	3
4	6
8	9
10	10
100	20
1000	30


Path loss in dB (atenuare)

dBm (absolute measure of power)

c.yu91@csuohio.edu

Unități de măsură


Signal to Noise Ratio SNR = S[mW]/N[mW]

$$SNR[dB] = 10log_{10}(S/N)$$

 $= 10\log_{10}S - 10\log_{10}N =$

= S[dBm]-N[dBm]

Temă: instalați programul WiFiman

Atenuarea undelor radio

 $P_r = P_t/atenuare$, unde atenuare = $(4\pi df/c)^n$

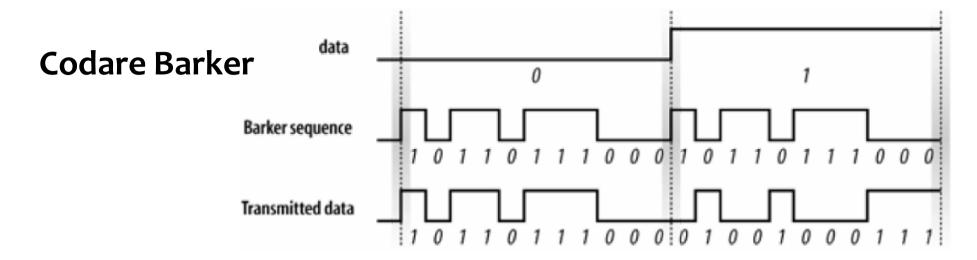
d = distanța

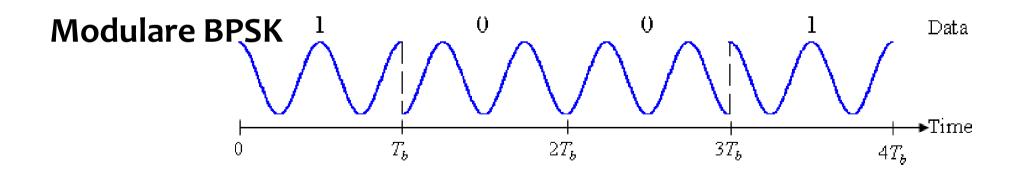
f = frecvența purtătoarei

n = exponent specific mediului

c = viteza luminii

mediu	n	propagare
coridoare	1.4 – 1.9	ghid undă
Camere mari, libere	2	free space loss
Camere cu mobilă	3	FSL + multicăi
Camere încărcate	4	non LOS, difracție, împrăștiere
Între etaje	5	traversare podele, pereți


Nivelul fizic (radio)



- Scop: Transferul biţilor prin mediu
- Codare: transformă un semnal digital în altul, mai potrivit
 - Control erori , redundanță (FEC)
 - Bit -> chip (CDMA)
- Modulare/demodulare
 - conversia digital-analog-digital
- MCS = modulation + coding scheme
- suport L2 (temporizare, sincronizare, încadrare)

Exemplu MCS pentru WiFi 1Mbps

Modulation&coding scheme

- MCS = combinație de codare + modulare
- obține o <u>rată fixă</u> de transmisie în bps
- Exemple WiFi: 1Mbps, 54Mbps, 600Mbps, 1.3Gbps

MCS mare necesită putere mare

- -Trimitem la putere mai mare
- Mergem mai aproape de sursă
- Folosim o antenă mai mare

Controlul erorilor (PHY + LL)

1. <u>Detecție</u>

- Biţi de paritate
- Checksum, CRC

2. Corecție

- FEC (Forward Error Correction)
 - Coduri bloc
 - Hamming, Reed-Solomon

ARQ (Automatic Repeat Request): Stop&Wait, GoBackN,
 Selective Repeat

physical

layer

— HARQ (Hybrid ARQ)

link

Detecție vs Corecție

- Ambele sunt necesare
 - Detecție fără corecție?
 - Corecție fără detecție?
- Detecție overhead mic
 - Ethernet, WiFi: payload CRC 4 octeți
 - IP header checksum: 2 octeți
 - TCP/UDP <u>payload</u> checksum: 2 octeți
- Corecție overhead MARE în timp/biți
 - ARQ: se retransmite
 - FEC: se folosesc biţi suplimentari redundanţă

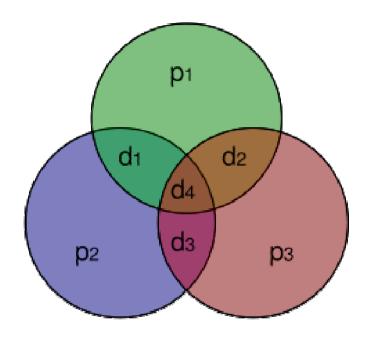
FEC: Coduri Corectoare pe bloc

- Codare la transmisie (FEC encoder)
 - bloc de k simboluri se mapează la un cuvânt de n simboluri
 - se emit n simboluri
 - Decodare la recepţie (FEC decoder)
 - A. din n simboluri primite se recuperează k simboluri corecte
 - B. se detectează maximum t erori nerecuperabile
 - C. nu se detectează erori, deși ele sunt prezente
- Cod(n, k)
 - Overhead = (n-k)/k

$$BER = \frac{1}{n} \sum_{i=t+1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$$

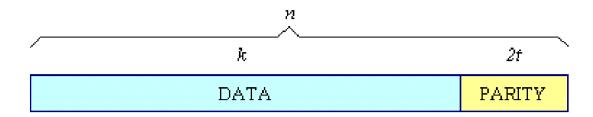
$$p = BER \text{ necodat}$$

FEC: Cod cu repetiție(3,1)


- Simbol = 1 bit
- k = 1 n = 3
- transmit 3 biţi pentru 1
- votează la recepție
- corecție 1 bit eronat
- overhead: 200%

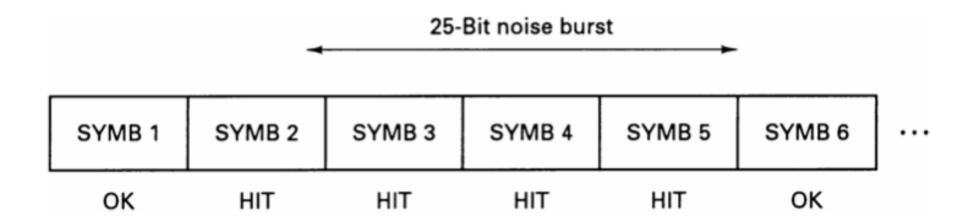
Recepție	Interpretare
000	o(fără eroare)
001	О
010	0
100	О
011	1
101	1
110	1
111	ı (fără eroare)

FEC: Cod corector Hamming(7,4)



- k = 4 n = 7
- Codează 4 biţi în 7 biţi
- Corectează 1 bit eronat
- Detectează 2 biți eronați
- Overhead 75%

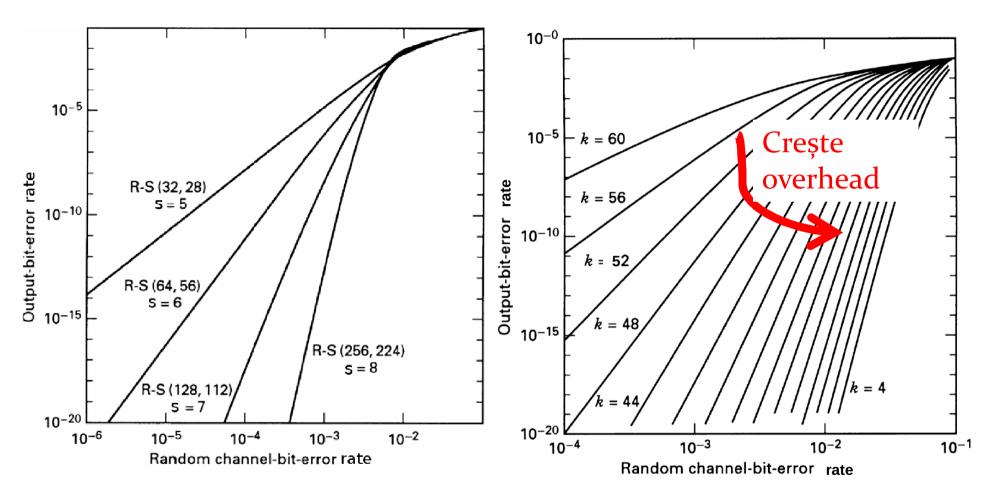
FEC: cod Reed Solomon



Exemplu RS(255, 223): s=8 bit per simbol 2t=32 simboluri de paritate n=2^s-1 lungimea cuvântului

- k simboluri de transmis => se emit n = k + 2t = s(2^s-1) biţi
- corectează max t erori poziții necunoscute în n
- Overhead (n-k)/k
- Complexitate codec depinde de t,s

Exemplu RS(255,247)



- bloc de 255 simboluri de 8 biți
- 247 originale + 8 de paritate
- orice 4 simboluri se pot pierde
- rezistă cu bine la o rafală de pierderi de 25 biți
- dar la 25 de biţi răspândiţi aleator?

26.02.2019

Performanța RS

overhead fix de 1/7 cu s=5..8

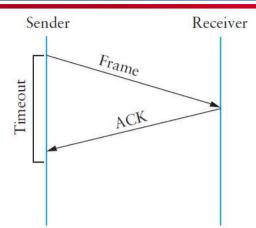
- s crește => crește blocul
- s crește => crește rezistența

RS(64,k):

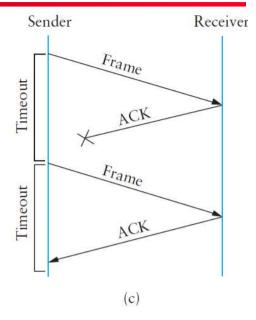
- k scade => crește overhead
- k scade => crește rezistența

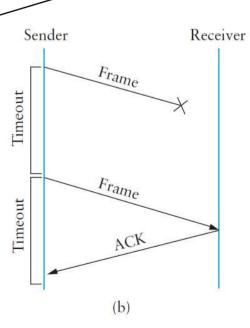
Proprietăți FEC

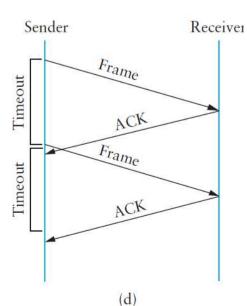
OWD = one way delay


- Overhead mare
- Overhead-ul depinde de capacitatea de corecție dorită
- Funcționează până la o rată maximă de erori
 - Necesită detecție
 - Necesită calitatea canalului cunoscută :-(
- Aplicații
 - RTT mare: spaţiu (Marte OWD = 4-24 minute)
 - Stocare pe disc/bandă: informația e "uitată" la sursă

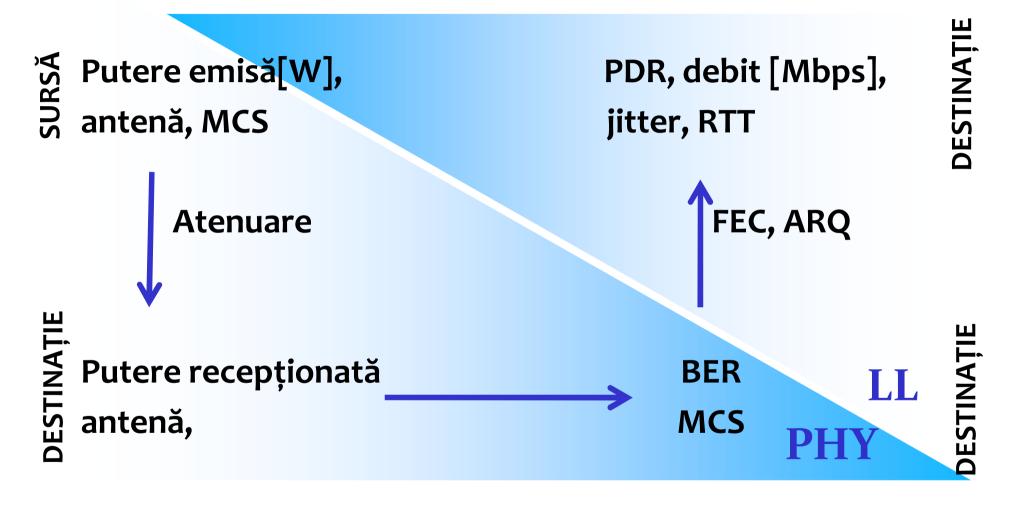
Automatic Repeat reQuest




- necesită detecția erorilor
- repetă cadrul/cadrele eronate
- Overhead în timp
 - RTT + timeout
 - Retransmisia propriu-zisă


Stop&Wait

(a)


Automatic Repeat reQuest

- necesită detecția erorilor
- repetă cadrul/cadrele eronate
- Overhead în timp, capacitate
 - RTT + timeout
 - Retransmisia propriu-zisă
- Stop&Wait
- Window based: Go back N, Selective Repeat
- HARQ (Hybrid ARQ)
 - Cadrele necorectate de FEC sunt recuperate cu ARQ

PHY și LL (nivelele 1 și 2) în radio

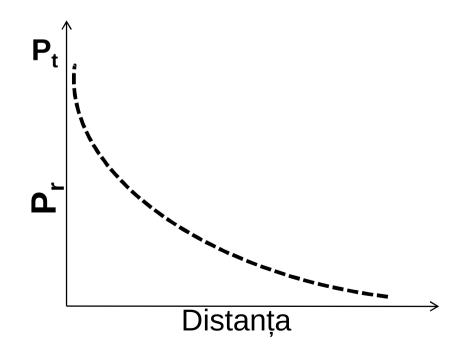
PDR = packet delivery ratio

BER = bit error rate

RTT = roud trip time

facultative

• (nu se cer la examen)


Atenuare

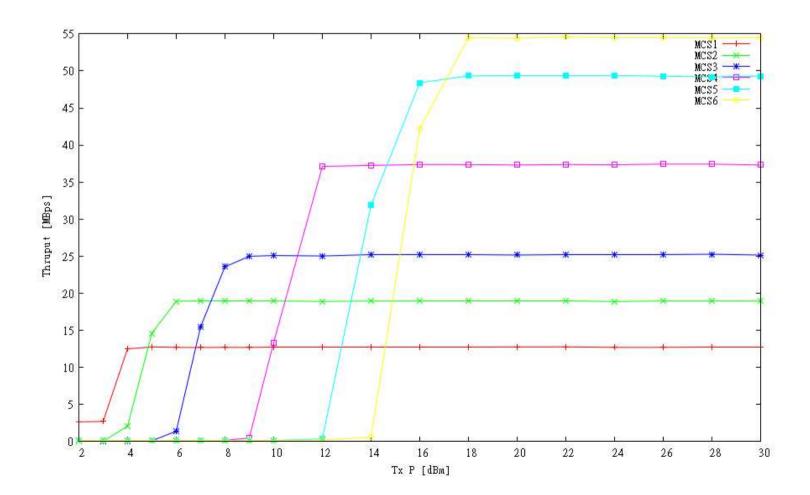
Atenuare[dB] = 10
$$\log_{10} (4\pi df/c)^n =$$

= 10 $\log_{10}(d) + Const.$

Efect: puterea recepționată[dB] depinde logaritmic de distanță

În dBm: $P_r = P_t$ - atenuare

Unități de măsură


- Bit Error Ratio (BER) = probabilitatea de eroare 1 bit
 - 1000BASE-T: 10⁻¹⁰
 - **− Fibră: 10**⁻¹⁵
 - Wireless: 10⁻⁶ .. 1
- Packet Error Ratio (PER)
 - probabilitatea de eroare 1 pachet de L biți
 - PER = $1 (1 BER)^{L}$

Modulation&coding scheme

MCS mari necesită putere mare

 Experiment în UPB: 2 laptop-uri la distanță fixă, se modifică puterea de transmisie (Tx power), se măsoară debitul obținut în Mbps

