

Contents

Introduction .. 1

Graphics Processing Units .. 1

RapidMind Development Platform......................... 2

Writing RapidMind Enabled Applications 2

How Does It Work? .. 3

Example: A Particle System...................................... 3

Example: Blinn-Phong Shading 5

High Performance Made Simple 6

About RapidMind Inc. ... 6

Writing Applications for the GPU
Using the RapidMind™
Development Platform

Abstract
The RapidMind Development Platform allows
developers to use standard C++ programming to
easi ly create applications targeted for high-
performance processors, including GPUs, the Cel l
BE, and multi-core CPUs. In the case of the GPU,
the RapidMind platform can be used for both
shaders and general purpose processing. For
shaders, the platform provides many advantages
over other shading systems, including support for
object-oriented programming. For general purpose
processing, the platform provides a simple
computational model that can be mapped onto any
available computational resource in a system,
including both GPUs and other processors. Code can
be written once, then run in parallel on any of the
processors that RapidMind supports.

Copyright © 2006 RapidMind
Inc.

Copyright © 2006 RapidMind Inc. Page 1

Introduction
Graphics Processing Units (GPUs), the main processors of commodity video accelerator cards in PCs, are
capable of achieving very high levels of performance by uti l izing the power of paralle l processing. In fact,
these processors typically have more than an order of magnitude more floating-point power than the host
CPU they support. Although designed for graph ics applications, they can be used for arbitrary
computations; however, graphics APIs do not directly support this mode of usage.

The RapidMind Development Platform makes it straightforward to access a GPU’s power for general-
purpose computation without any need to work through a graphics API. The RapidMind platform provides
a simple data-paralle l model of execution that is easy to understand and use, and maps eff iciently onto the
capabil i ties of GPUs. The RapidMind platform’s unique interface enables access to a GPU’s power from
within a single ISO-standard C++ program without any specia l extensions. It al lows the use of familiar
development environments and tools by building upon concepts and strategies a lready familiar to C++
programmers.

It is a lso possible to use the platform to write shaders and graphical applications as a specia l case of the
platform’s general-purpose capabil i ties. The RapidMind platform supports both NVIDIA® and ATI®
GPUs.

This document outl ines the challenges general-purpose GPU programming presents to programmers and
describes how these challenges are effectively overcome using the RapidMind Development Platform. A
simple example of a particle system simulation is used to show how straightforward it is to leverage GPUs
for general purpose computation by using the RapidMind Development Platform. We also demonstrate how
the platform can be used to program shaders for graphical applications.

Graphics Processing Units
GPUs from ATI and NVIDIA are massively paralle l processors that can support more than 30x the floating-
point power of typical host CPUs and more than 5x the memory bandwidth. This processing power is
necessary to implement shaders, which are small programs which must be executed at every vertex to
transform it in 3D space and at every pixel to compute the color of that pixel. Although they are powerful,
GPUs are widely available on inexpensive video accelerator cards, and are standard components of most
PCs.

The execution of shaders can be considered a form of stream processing, a massively parallel computing
model that emphasizes coherent access to memory. However, the programming model for GPUs is usually
expressed in graphics terms, and can be inconvenient to use for general-purpose computation. For instance, to
apply a function to an array, it is necessary to bind a shader and draw a rectangle to the screen. To
implement random-access reads from memory, it is necessary to set up texture maps and bind them to
shaders. To write to output arrays, it is necessary to use frame buffer object interfaces to bind the output of
the shaders to a texture. To write to computed locations in output arrays, it is necessary to reinterpret image
pixel values as vertex positions and render a sequence of points that the rasterizer scatters to new locations
on a destination buffer. This makes it very complex and confusing to program GPUs for general
applications.

Although GPU hardware vendors provide languages for programming the shader units of their hardware,
these languages only provide the abil i ty to program shaders—not the whole system. Many other aspects of
the GPU must be managed, in particular memory. The GPU memory is separate from the host memory, so i t
is necessary to transfer data to and from the video accelerator. Also, binding shader code to the host
application requires a large amount of glue code. Finally, after programming a GPU this way, the resulting
code wil l only run on GPUs, and cannot easi ly be ported to other hardware targets, such as the Cell BE.

Copyright © 2006 RapidMind Inc. Page 2

RapidMind Development Platform

RapidMind provides a software development platform that a l lows the developer to use standard C++
programming to easi ly create high-performance and massively parallel applications that run on the GPU.
Developers are provided a single, simple and standard way to program which the RapidMind platform
then maps onto al l available computational resources in a given system. Developers can continue to use their
existing C++ compilers and build systems. The RapidMind platform is embedded in the application and
transparently manages massively parallel computations.

Application Structure

Writing RapidMind Enabled Applications
Users of the RapidMind Development Platform continue to program in C++ using their existing compiler.
After identifying components of their application to accelerate, the overall process of integration is as
fol lows:

1. Replace types: The developer replaces numerical types representing floating point numbers and
integers with the equivalent RapidMind platform types.

2. Capture computations: While the user’s application is running, sequences of numerical operations
invoked by the user’s application are captured, recorded, and dynamically compiled to a program
object by the RapidMind platform.

3. Stream execution: The RapidMind platform runtime is used to manage paralle l execution of program
objects on the target hardware (in this case, a GPU).

 Process to change applications to use the RapidMind Development Platform

Copyright © 2006 RapidMind Inc. Page 3

How Does It Work?
The RapidMind Development Platform is an advanced dynamic compiler and runtime management system
for parallel processing. It has a sophisticated interface embedded within standard ISO C++. It can be used
to express arbitrary parallel computations, but it is not a new language. Instead, it merely adds a new
vocabulary to standard ISO C++: a set of nouns (types) and verbs (operations). In the case of the GPU, this
new vocabulary a l lows the specif ication of high-performance parallel computations, while reta ining close
integration with standard C++ code running on the host processor. In essence, the RapidMind Development
Platform enables programming of the GPU as a co-processor, under a single unified programming model,
while using existing tools.

A user of the RapidMind Development Platform writes C++ code in the usual way, but uses specif ic types for
numbers, vectors of numbers, matrices, and arrays. In immediate mode, operations on these values can be
executed on the host processor, in the manner of a simple operator-overloaded matrix-vector l ibrary. In this
mode, the RapidMind Development Platform simply reflects standard practice in numerical programming
under C++.

However, the RapidMind platform also supports a unique reta ined mode. In this mode, operations are
recorded and dynamically compiled into a “program object” rather than being immediately executed. These
program objects can be used as functions in the host program. In the case of GPUs, applying such a function to
an array of values automatically invokes a massively paralle l computation on the video accelerator. Data
is automatically transferred to and from the video accelerator, overlapping computation with data
transfers. Program objects mimic the behavior of native C++ functions, including support for modularity and
scope, so standard C++ object-oriented programming techniques can be leveraged. It should be noted that at
runtime, program objects only execute the numerical computations they have recorded, and can completely avoid
any overhead due to the object-oriented nature of the specification. The platform uses C++ only as scaffolding to
define computations, but rips away this scaffolding for more efficient runtime execution.

The RapidMind Development Platform can target other processors. In particular, it can also be used to
program the Cell BE processor and the host CPU with dynamically compiled code.

Example: A Particle System
As a simple example to demonstrate the use of the RapidMind Development Platform on the GPU, the code
below is provided. This code simulates a particle system, and specifies a parallel computation which wil l
take place on the GPU. Every particle has a state. At every timestep of the simulation, each particle must
execute a rule to update its own state and such rules can depend on a number of other inputs. Such simulations
have many applications, especia l ly when a sufficiently large number of particles are used, as is possible on
the GPU. Appropriate choices of state and update rules can give rise to a wide variety of interesting
phenomena.

We can store the state of a l l the particles in an array and then write a “program object” that wil l update a l l
the states in paralle l. A state update rule that integrates the acceleration due to gravity and checks for
coll ision against a ground plane is given in the listing on the next page. More complex rules are possible th a t
check for coll ision against other objects or that use the state of other nearby particles to implement
collective behaviors.

After the simulation step, another rule can be run to convert the state of each particle to a visualization.
These rules can also be written using the RapidMind Development Platform.

In this code example, the words in boldface are types and keywords (macros) provided by the RapidMind
Development Platform. These types and macros are implemented using standard ISO C++ features, and
work with a variety of compilers. The types used in this example come in a number of flavors representing
different geometric objects, but basically represent short vectors of floating point numbers. The user can
create types for their own purposes by extending the types provided. The BEGIN macro enters reta ined mode
and creates a program object cal led particle, and marks it for the streaming execution mode. This program

Copyright © 2006 RapidMind Inc. Page 4

object wil l act as a container for al l the operations specified up to the invocation of the END macro. The
InOut type modif ier marks the pos and vel variables as both inputs and outputs. Finally, at the end of the
code example, we invoke the program object particle on arrays of positions ps and velocities vs, updating
them. The syntax shown can combine multiple arrays into a single stream, execute the program object, then
split apart the output into multiple destination arrays. The computation specif ied in this code example
executes completely on the GPU.

// STATE ARRAYS
Array<1,Value3f> ps(n_particles); // array holding particle positions
Array<1,Value3f> vs(n_particles); // array holding particle velocities

// PARAMETERS
float mu = 0.3f; // parameters controlling collision response
float eps = 0.6f;

Value1f delta(1.0f/60.0f); // timestep delta (this type mimics a float)
Value3f g(0.0f,-9.8f,0.0f); // acceleration due to gravity

// DEFINE STREAM PROGRAM

particle = BEGIN { // create a new program object
 InOut<Value3f> pos; // position; both input and output
 InOut<Value3f> vel; // velocity; both input and output
 // SPECIFY COMPUTATIONS
 // clamp acceleration to zero if particles at or below ground plane
 Value3f acc = cond(abs(pos[1])<0.05f, Value3f(0.0f,0.0f,0.0f), g);

 // integrate acceleration to get velocity
 vel += acc*delta;

 // integrate velocity to update position
 pos += vel*delta;

 // check if below ground level
 Value1f under = pos[1] < 0.0f;

 // clamp to ground level if necessary
 pos = cond(under, pos * Value3f(1.0f,0.0f,1.0f), pos);

 // modify velocity in case of collision
 Value3f veln = vel * Value3f(0.0f,1.0f,0.0f);
 Value3f velt = vel - veln;
 vel = cond(under, (1.0f - mu)*velt - eps*veln, vel);

 // clamp position to the edge of the plane, just to make it look nice
 pos =
 min(max(pos, Value3f(-5.0f, numeric_limits<float>::min(), -5.0f)),
 Value3f(5.0f, numeric_limits<float>::max(), 5.0f));
} END;

// EXECUTE STREAM PROGRAM WITH MULTIPLE VALUE RETURN BUNDLE
bundle(ps, vs) = particle(ps, vs); // uses parallel assignment semantics
Stream program for particle system simulation

One of the important features of the RapidMind Development Platform is that no glue code is required. The
above code is the API. Co-processor code can be treated as simply part of the host application. Program
objects can be used, essentia l ly, as dynamically definable functions that can be run in paralle l on al l th e
elements of arrays. On the GPU, execution of program objects, such as particle in the example, are
automatically mapped to the graphics hardware and managed by a runtime scheduler.

Copyright © 2006 RapidMind Inc. Page 5

You will notice that there is no explicit reference in the above program to a graphics API or the GPU.
Neither the developer nor the application needs to be concerned about the actual processor resources th a t
might be available at runtime. Whether targeting for a multi-core CPU, a GPU, or the Cell BE, the program
itself does not change. The RapidMind Development Platform takes care of mapping the program objects
onto available computational resources.

Example: Blinn-Phong Shading
The RapidMind platform can also be used to implement shaders. The l isting given below presents an
example where the platform is used to specify vertex and fragment shaders in order to implement the Blinn-
Phong lighting model. Shaders are GPU-specif ic, but conceptually they are specia l versions of the program
objects used for general-purpose computation. Functions and objects defined for general-purpose computation
can also be used for shaders, and vice-versa. The platform also manages texture maps and other memory,
enabling a powerful form of data abstraction not avai lable in other shading languages. Using the platform
to program shaders is also useful when the results of general-purpose computations on the GPU need to be
visualized.

// DEFINE VERTEX SHADER
vertex_shader = BEGIN_PROGRAM("vertex") {

 // declare input vertex attributes (unpacked in order given)
 In<Value3f> nm; // normal vector (MCS)
 In<Value4f> pm; // position (MCS)
 // declare outputs vertex attributes (packed in order given)
 Out<Value3f> nv; // normal (VCS)
 Out<Value3f> pv; // position (VCS)
 Out<Value3f> pd; // position (DCS)
 // specify computations (transform positions and normals)
 pv = (MV*pm)(0,1,2); // VCS position
 pd = (MD*pm)(0,1,2); // DCS position
 nv = normalize(nm*inverse_MV(0,1,2)(0,1,2)); // VCS normal
} END;

// DEFINE FRAGMENT SHADER
fragment_shader = BEGIN_PROGRAM("fragment") {

 // declare input fragment attributes (unpacked in order given)
 In<Value3f> nv; // normal (VCS)
 In<Value3f> pv; // position (VCS)
 In<Value3f> pd; // fragment position (DCS)
 // declare output fragment attributes (packed in order given)
 Out<Value3f> fc; // fragment color
 // compute unit normal and view vector
 nv = normalize(nv);
 Value3f vv = -normalize(pv);

 // process each light source
 for (int i = 0; i < NLIGHTS; i++) {

 // compute per-light normalized vectors
 Value3f lv = normalize(light_position[i] - pv);
 Value3f hv = normalize(lv + vv);
 Value3f ec = light_color[i] * max(0.0f,dot(nv,lv));

 // sum up contribution of each light source
 fc += ec *(kd + ks*pow(pos(dot(hv,nv)),q));
 }
} END;

Copyright © 2006 RapidMind Inc. Page 6

Vertex and fragment shaders for the Blinn-Phong lighting model.

High Performance Made Simple
The RapidMind Development Platform allows developers to use standard C++ programming to easi ly create
applications targeted for high performance processors, including the Cell BE, GPUs, and CPUs. In the case
of GPUs, the RapidMind platform implements user-specified arbitrary computations on the GPU, without
any explicit reference by the developer to graphics APIs. The RapidMind platform provides a simple
computational model that can be targeted by programmers and then maps this model onto any available
computational resources in a system. Code can be written once, then run in paralle l on any of the processors
that the RapidMind Development Platform supports.

About RapidMind Inc.
RapidMind provides a software development platform that al lows applications to take advantage of a new
generation of high performance processors, including the Cell BE, GPUs, and other multi-core processors.
The RapidMind Development Platform enables applications to realize the performance breakthroughs
offered by these processors. Based in Waterloo, Canada, RapidMind is a venture-backed private company
that is built on over five years of advanced research and development.

For more information on how RapidMind can help you with your high performance application, visi t
WWW.RAPIDMIND.NET

RapidMind and the RapidMind logo are trademarks of RapidMind Inc.
NVIDIA is a registered trademark of NVIDIA Corporation in the United States and/or other countries.
ATI is a registered trademark of ATI Technologies Inc.
Other company, product, or service names may be trademarks or service marks of others.

060320

