Systems and Technology Group

®
DUl c U (J O
U C DU C
= U = U

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

06/27/06

Systems and Technology Group

Class Obijectives — Things you will learn

= Key programming techniques to exploit cell
hardware organization and language features for

- SPU
- SIMD

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Class Agenda

= Review relevant SPE Features
= SPU Programming Tips

— Level of Programming (Assembler, Intrinsics, Auto-Vectorization)
— Overlap DMA with computation (double, multiple buffering)
— Dual Issue rate (Instruction Scheduling)

— Design for limited local store

— Branch hints or elimination

— Loop unrolling and pipelining

— Integer multiplies (avoid 32-bit integer multiplies)

— Shuffle byte instructions for table look-ups

— Avoid scalar code

— Choose the right SIMD strategy

— Load / Store only by quadword

= SIMD Programming Tips

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Review Cell Architecture

Course Code: L3T2H1-58 Cell Programming Tips & Techniques 06/27/06

Systems and Technology Group

Cell Processor

Cell BE Processor

Element Interconnect Bus (96 bytes/cyde)

(3.5x 32
instruction)

Branch: 1,2
& bytes 16 bytes 128 bytes Branch hint: 1,2
{perdir) (one dir) (one dir) (Glabaly Coherent) Eﬁcégunefgd;: 2

|

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Cell Broadband Engine Overview

- Heterogeneous, multi-core engine
» 1 multi-threaded power processor

L L
o o
w wn

» up to 8 compute-intensive-ISA engines

‘ ‘ ‘ ‘ Jd Local Memories
Element Interconnect Bus (96 Bytes/cycle) » fast access to 256KB local memories

» globally coherent DMA to transfer data

L1
L2

- Pervasive SIMD
» PPE has VMX

» SPEs are SIMD-only engines

5

C.-'_"h.
® B O
= 0 E
ngn_
n"‘—mu
(e

To External Mem
To External IO

- High bandwidth
~ fast internal bus (200GB/s)

» dual XDR™ controller (25.6GB/s)

» two configurable interfaces (76.8GB/s)
‘l 8 Bytes I 16Bytes ‘ 126Bytes » numbers based on 3.2GHz clock rate

(per dir) {one dir) {one dir)

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Key SPE Features

Synergistic Processing Element (SPE)

Reglster Flle
(128 x 16Byte reqister)

Even Pipe Odd Pipe
Floating/
Fixed
Point

Branch
Memory
Permute

p

Local Store
(256 KByte, Single Ported)

- |

(Globally-Coherent)

Dual Issue
Instruction
Logic

Instr.Buffer :
(3.5 x32instr) §

branch: 1,2
branch hint: 1.2
instr. fetch: 2
dma request: 3

|}

& byvtes
(per dir)

16 bytes
I {one dir)

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

128 bytes
{one dir)

1 SIMD-only functional units
» 16-bytes register/memory accesses

U Simplified branch architecture
» no hardware branch predictor

» compiler managed hint/predication

(J Dual-issue for instructions
» full dependence check in hardware

» must be parallel & properly aligned
1 Single-ported local memory

» aligned accesses only

» contentions alleviated by compiler

06/27/06

Systems and Technology Group

SPE - Single-Ported Local Memory

SPE 4 Local store is single ported
» less expensive hardware

EYPENY FYSTTYIRYIROPR rrerrrrrrramn — . » asymmetric port

Even Pipe § Ddd Pipe & Dl
Floating/ (Ml Branch [mgf‘m;{ﬂ;‘f « 16 bytes for load/store ops

Fixed {ll Memory § B Logic « 128 bytes for IFETCH/DMA
Point N Permute " iff £

» static priority

ie
Register Fle | InstrBuffer . DMA> MEM > IFETCH
(128 x 16Byte register) B (3.5x32instr) At

d If we are not careful, we may
starve for instructions

Local Store
(256 KByte, Single Ported)

branch: 1,2
branch hint: 1.2

(Globally-Coherent) | instr. fetch: 2
dma request: 3

128Bytes
{one dir)

' & Bytes 16Bytes
(per dir) {one dir)

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

SPU Programming Tips

Course Code: L3T2H1-58 Cell Programming Tips & Techniques 06/27/06

Systems and Technology Group

SPU Programming Tips

= Level of Programming (Assembler, Intrinsics, Auto-Vectorization)
= Overlap DMA with computation (double, multiple buffering)
= Dual Issue rate (Instruction Scheduling)

= Design for limited local store

= Branch hints or elimination

= Loop unrolling and pipelining

= Integer multiplies (avoid 32-bit integer multiplies)

= Shuffle byte instructions for table look-ups

= Avoid scalar code

= Choose the right SIMD strategy

= Load / Store only by quadword

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Programming Levels on Cell BE
Trade-Off

Performance vs. Effort

Expert level
— Assembler, high performance, high efforts

More ease of programming

— C compiler, vector data types, intrinsics, compiler schedules
instructions + allocates registers

Auto-SIMDization

— for scalar loops, user should support by alignment directives,
compiler provides feedback about SIMDization

Highest degree of ease of use

— user-guided parallelization necessary, Cell BE looks like a
single processor

Requirements for Compiler increasing with each level

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Overlap DMA with computation

= Double or multi-buffer code or (typically)
data

= Example for double bufferign n+1 data
blcoks:

— Use multiple buffers in local store
— Use unique DMA tag ID for each buffer

— Use fence commands to order DMASs within
a tag group

— Use barrier commands to ordr DMAs within
a queue

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

Initiate DMA O

| for =0 to n-

Initiate DMA /+1

Wait for DMA j

Compute on |

Wait for DMA n

Compute on n

Y

06/27/06

Systems and Technology Group

Start DMAs from SPU

= Use SPE-initiated DMA transfers rather than PPE-
initiated DMA transfers, because

—there are more SPEs than the one PPE

— the PPE can enqueue only eight DMA requests whereas
each SPE can enqueue 16

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Instruction Scheduling

®m Choose intrinsics/instructions to maximize dual issue rates or reduce

latencies (fine tuning)

Pipe 0 Instructions length stall

Single precision floating-point ops 6 0

Integer multiplies, convert between float/int, interpolate 7 0

Immediate loads, logical ops, integer add/subtract, sign 2 0

extend, count leading zeros, select bits, carry/borrow

generate

Double precision floating-point ops 7 6

Element rotates and shift 4 0
4 0

Shuffle bytes, quadword rotates

(]

Byte ops (count ones, abs difference, averge, sum
Pipe 1 Instructions length stall

,_..
a

Load/store, branch hints

Branch

Channel, move to/from spr

()] EEN [e)] BiN

(] o] e o

= Dual issue will occur if:

»pipe O instruction even addressed, pipe 1 instruction odd address

»no dependencies (operands are available)

= Code generators use nops (nop, Inop) to align instructions for dual issue

Course Code: L3T2H1-58 Cell Programming Tips & Technigues

Systems and Technology Group

Instruction Starvation Situation

initiate
refill
after
half
empty

Dual-Issue
Instruction
Logic

There are 2 instruction buffers

— up to 64 ops along the fall-through
path

First buffer is half-empty
— can initiate refill

When MEM port is continuously
used

— starvation occurs (no ops left in
buffers)

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Instruction

initiate
refill
after
half
empty

Systems and Technology Group

Dual-Issue
Instruction
Logic

I
|
I
|
I
|
[
J
I
I
I
I
I
I
I

instruction buffer

arvation Prevention

= SPE has an explicit IFETCH op
— which initiates an instruction

before fetch

it is too

late to = Scheduler monitors starvation
) situation

hide

latency — when MEM port is

continuously used

— insert IFETCH op within the
(red) window

refill IFETCH latency

= Compiler design

— scheduler must keep track of
code layout

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Design for Limited Local Store

= The Local Store holds up to 256 KB for

— the program, stack, local data structures, and DMA
buffers.

= Most performance optimizations put pressure on
local store (e.g. multiple DMA buffers)

= Use plug-ins (runtime download program kernels)
to build complex function servers in the LS.

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Branch Optimizations

= SPE
— Heavily pipelined - high penalty for branch misses (18 cycles)
— Hardware policy: assume all branches are not taken

= Advantage
— Reduced hardware complexity
— Faster clock cycles
— Increased predictability

= Solution approaches
— If-conversions: compare and select operations
— Predications/code re-org: compiler analysis, user directives
— Branch hint instruction (hbr, 11 cycles before branch)

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

06/27/06

Systems and Technology Group

Branches

= Eliminate non-predicted branches
» use feedback directed optimization
»use __ builtin_expect when programmer can explicitly direct branch prediction

=eX. if (a>Dhb) c+=1
else c=a+tb
if (__builtin_expect(a=b, 0)) ¢c+=1 /[l predictais not>Db
else c=atb
» utilitze the select bits (spu_sel) instruction.
=eX. if (a > D) c+=1
else c=a+tb

select = spu_cmpagt(a, b);

c1 =spu_add(c, 1);

ab = spu_add(a, b);

c = spu_sel(ab, c1, select);

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Feature #2: Software-Assisted Branch Architecture

SPE

Reglstar FI|B
(128 x 16Byte register)

Local Store
(256 KByte, Single Ported)

SINCOYY: SRSy

Even Pipe [l Odd Plpe 1
Floating/ § Branch

Fixed 'l Memory
Point Bl Permute

i
.a..l!

= rmAmsEmssmsmssmoas wEEE

Dual-Issue
Instruction
Logic

Instr.Buffer ¢
(3.5 x 32 instr) :

branch: 1.2
branch hint: 1.2
instr. fetch: 2

dma request: 3

& bytes 16 bytes
' (per dir) I {one dir)

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

128 bytes
{one dir)

(1 Branch architecture

» no hardware branch-predictor, but
» compare/select ops for predication
» software-managed branch-hint

» one hint active at a time

 Lowering overhead by
» predicating small if-then-else

~ hinting predictably taken branches

06/27/06

Systems and Technology Group

Dual-Issue
Instruction
Logic

instruction buffers

= SPE provides a HINT operation
— fetches the branch target into HINT

buffer
— no penalty for correctly predicted
branches
IFETCH HINT br, target
window
fetches ops from target; -
refill needs a min of 15 cycles ::
latency and 8 intervening ops
BRANCH if true o
target v

— compiler inserts hints when beneficial

= Impact on instruction starvation

— after a correctly hinted branch,
IFETCH window is smaller

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Loop Unrolling

— Unroll loops

 to reduce dependencies
* increase dual-issue rates

— This exploits the large SPU register file.
— Compiler auto-unrolling is not perfect, but pretty good.

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Loop Unrolling - Examples

j=N; a[ll = (b[1] + bIN]) / 2;

For (i=1, i<N, i++) { For (i=2, i<N, i++) {
a[i] = (b[i] + b[3]) / 2; s a[i] = (b[i] + b[i-1]) / 2;
j =1 }

For (i=l, i<100, i++) { For(i=1, 1<99, i+=2) {

af[i] = b[i+2] * c[i-1]; - al[i] = b[i+2] * c[i-1];
} a[i+l] = b[i+3] * c[i];

Course Code: L3T2H1-58 Cell Programming Tips & Techniques 06/27/06

Systems and Technology Group

SPU

= Unroll loops to reduce dependencies and increase dual issue rates.

»exploits large SPU register file
» Example - xformlight workload (each loop iteration processes 4 vertices)

1 (none) 1.00 1.35 3.3% 27.2% 78 768
2 1.52 0.91 19.8% 5.9% 103 1344
4 1.73 0.76 34.3% 0.9% 128 3076
8 1.66 0.67 35.8% 1.5% 128 5252

»compiler auto-unrolling is not perfect, but doing pretty good.

» Results using spuxlc unrolling (unroll_large):

1 (none) 1.57 0.87 21.6% 1.9% 94 1472
2 1.52 0.91 18.4% 5.9% 103 1344
4 1.73 0.76 34.3% 0.9% 128 3076
8 1.66 0.67 35.8% 1.5% 128 5252

Course Code: L3T2H1-58 Cell Programming Tips & Technigues

Systems and Technology Group

SPU - Software Pipeline

= Software pipeline loops to improve dual issues rates.
= spuxlc does some pipelining.

load 0
-‘ compute 0 load 1
load /
CDmpUtE / - Enmpute] store /-1
load i+1
store /
compute n store n-1
store n

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

06/27/06

Systems and Technology Group

Integer Multiplies

= Avoid integer multiplies on operands greater than 16 bits
— SPU supports only a 16-bit x16-bit multiply

— 32-bit multiply requires five instructions (three 16-bit multiplies
and two adds)

= Keep array elements sized to a power-of-2 to avoid
multiplies when indexing.

= Cast operands to unsigned short prior to multiplying.
Constants are of type int and also require casting.

= Use a macro to explicitly perform 16-bit multiplies. This can
avoid inadvertent introduction of signed extends and masks
due to casting.

#define MULTIPLY (a, b)\

(spu_extract (spu mulo ((vector unsigned short) spu promote(a,0), \

(vector unsigned short)spu promote(b, 0)),0))

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Avoid Scalar Code

m Scalar load/store are slow with long latency
» SPU only supports quadword loads and stores

»Ex: void add1(int *p) {
}

add1: lgd
rotgby
ai
cwd
shufb
stqd

» Strategies:

54,

$5

$6
$4

54,

O(p)

P4, p
$5, $5, 1
, O(ptr)
, 5, 83

0(p)

load the gword pointed to by p

move *p to element 0 of reg 5

add 1

generate a shuffle pattern to insert *p+1 into qword
insert scalar into qword

save gqword with updated scalar pointed to by p

—consider making scalars gqword integer vectors
—load or store scalar arrays as quadwords and perform your own extraction and insertion

to eliminate load/store instructions.

» SDK example is RC4 encryption - scalar, non-parallelizable algorithm

scalar

540120

723245 1.34

optimized to eliminate
scalar overhead

265794

388457 1.46 1.86

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

06/27/06

Systems and Technology Group

Choose an SIMD strategy appropriate for your algorithm

= Evaluate array-of-structure (AOS) organization

— For graphics vertices, this organization (also called or
vector-across) can have more-efficient code size and
simpler DMA needs,

— but less-efficient computation unless the code is unrolled.

= Evaluate structure-of-arrays (SOA) organization.

— For graphics vertices, this organization (also called
parallel-array) can be easier to SIMDize,

— but the data must be maintained in separate arrays or the
SPU must shuffle AOS data into an SOA form.

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Choose SIMD strategy appropriate for algorithm

" VecC-acCross

_ iCi i I I I I |
More efficient code size 4 independent 4-component vectors

— Typically less efficient (cyan, red, green and yellow)
code/computation I I
unless code is unrolled I R

— Typically simpler DMA needs

= parallel-array
ey T e ey ey

— Easy to SIMD - program as if scalar, operating on 4 independent
objects at a time

— Data must be maintained in separate arrays or SPU must shuffle vec-
across data into a parallel array form

= Consider unrolling affects when picking SIMD strategy

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

SIMD Example

= SIMD example - point-normal triangle subdivision

»problem: compute subdivided vertices for n
independent triangles 4 5

»solution 1: vec-across 1 2 3

= evaluate vertices one at a time, unroll in improve performance
»solution 2: parallel array

- evaluate 4 subdivision vertices at a time for a single triangle
» solution 3: parallel array

- evaluate 1 subdivision point at a time on 4 independent triangles

1 1.0 1.10 9.1% 14.1% 72 1472
1 (unrolled by 2) 1.26 1.04 12.6% 13.6% 112 2496
1 (unrolled by 4) 1.54 0.90 18.5% 5.8% 127 4480
2 1.34 0.96 11.9% 2.6% 107 1856
3 1.70 0.99 13.6% 4.7% 113 512

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Load / Store by Quadword

= Scalar loads and stores are slow, with long
latency.

= SPUs only support quadword loads and stores.

= Consider making scalars into quadword integer
vectors.

= Load or store scalar arrays as quadwords, and
perform your own extraction and insertion to
eliminate load and store instructions.

Course Code: L3T2H1-58 Cell Programming Tips & Technigues

06/27/06

Systems and Technology Group

SIMD Programming Tips

Course Code: L3T2H1-58 Cell Programming Tips & Techniques 06/27/06

Systems and Technology Group

Single Instruction Multiple Data (SIMD) Computation

Process multiple “b[i]+c[i]” data per operations

—— 16-byte boundaries

£

U PO | b1 [b2 | b3 | b4 | bS5 | b6 | b7 | b8 | b9 | b10

. =

R1

b0+ | b1+ b2+ | b3+ Ra
cO [c1 |[c2 |c3

R2

D cO | el [c2 | c3 | cd |c5|cb|c/|]c8]| cO|c10

"“-——_______ .\\
k 16-byte boundaries

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Sequential Execution of a Loop
2 for (i=0; i<100; i++) a[i+2] = b[i+1] + c[i+3];

D I::-O b2 | b3 | ba | b5 | b6 | b7 | b8 | b9 |b10 E]

LOAD b[1]

memory streams

ch | c6 | e/ | c8 | cY |c10 ﬁ]

LOAD c[3]

15t original i=0 loop iteration in yellow

ab | a6 | a7 | a8 | a9 [a10 E]

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

SIMD Load/Store Preserve Memory Alignment

U Access only a 16-byte chunk of 16-byte aligned data*

0x1000 0x1010 0x1020

D b0 b2 b3 | ba | b5| b6 | b7 |08 |09 |b10 E]

N\

16-byte boundaries

VLOAD b[1]
&b [1l] = 0x1004

b0 b2 | b3

byte offset 4 in register

* AltiVec/VMX and others; SSE supports unaligned access, but less efficiently

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

SIMD Load/Store Preserve Memory Alignment
U Access only a 16-byte chunk of 16-byte aligned data*

0x1000 0x1010 0x1020 1

D b0 [(b7)| b2 [b3 | b4 | b5 | b6 [b7 [b8 | b9 |B10

b S

16-byte boundaries

VLOAD b[1]
&b [1l] = 0x1004

1%t original i=0 loop iteration in yellow
15t SIMD loop iteration in grey

* AltiVec/VMX and others; SSE supports unaligned access, but less efficiently

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Erroneous SIMD Execution
Q for (i=0; i<100; i++) a[i+2] = b[i+1] + c[i+3];

16-byte boundaries

ﬂbDbE b3 | ba | b5 | b6 | b7 | b8 T
b4 | b5 | b6 | b6

b9 |b10|b11

VLOAD bf1]
b0 |(b1)| b2 b3| ‘ba‘bg‘bm b11|
| :

[c0 | cf c2'@ cd | c5|c6|e?7|c

81 c9|c10]ct1
ed (eS| €6 | &f ‘CB‘CQ‘(ﬂU (:11I

g1+ b2+| b3+ b[1] and c[3] are not aligned
=> wrong results*

VLOAD c[3]

*got b[1]+c[1], wanted b[1]+c[3]

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Correct SIMD Execution (Zero-Shift) [IVAST 04]
Q for (i=0; i<100; i++) a[i+2] = b[i+1] + c[i+3];
- 4 byte 16-byte boundaries

ﬂb0b2b3b4b5b6b? b8 T
b5 | b6 | b7 | b8

b9 |b10|b11
b2 | b3 b4| ‘bg‘bw‘bﬁ h12|

< — - D)€ -

gl | el |ed FOREEnREEeS c/ | C
VLOAD & [@

81c9 |c10]|c11
C[3]
()| c4 | c5|co || c7|c8|co|ct0 ‘c11‘c12‘c13 .-:;14I
13+ b2+| b3+| b4+8| b5+| b6+| b7+| b8+ | b9+ [b10+b11+b12+
C cd4 | c5 |cb c/ |c8 |c9 |cl10 c11lc121c131c14

- © by (e T

B a0 | a1 a3 | a4 | ab | a6 | a7 | a8 | a9 [a10|al1

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

How to Align Data in Registers

U Load 4 values from misaligned address b[1]

D b0 _, b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |b10|b11|b12 T

16-byte boundaries

VLOAD b[1] VLOAD b[5]

offset 4
ER LOAD/STORE & SHIFT

are expensive
=> want to minimize them

. b2 | b3 | b4
offset 0 —//

" AlVecNMX and most other SIMD ISA have support for shuffling data of 2 registers

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

Better SIMD Execution (Lazy-Shift)

for (i=0; i<100; i++) a[i+2] = b[i+1] + c[i+3];
4 byte mE—p

[Eichen 04]

16-byte boundaries

b-11] b0

®

b2

b3

]

b-1| b0 b2|

b4 | b5 | b6 | b7 | b8
b3 | b4 | b5 | b6

b9 |b10|b11
‘b?‘hﬁ‘bg I:J10I

mmm /| hyie o
[co [e1 | c2 |(c3)|cd | c5|c6 |c7|c8|co|ctofctt
cl|c2 |(c)| ca f|c5|c6|c7|c8]]|co ‘mo‘cn c12|
b-1 | bOQ+yb1+Y b2+Q| b3+| b4+| b5+| b6+f | b7+| b8+ | b9+ b10+
+c3|c2 phCc3 fcd cS |c6 |c7 |c8 c9 le1tole11lc12
D a0 | a1 a3 | a4 | a5 | a6 | a7 | a8 | a9 [a10|at1 T

Course Code: L3T2H1-58 Cell Programming Tips & Technigues

06/27/06

Systems and Technology Group

Use Offset Pointer

= Use the PPE’s load/store with update instructions. These allow sequential
indexing through an array without the need of additional instructions to increment
the array pointer.

= For the SPEs (which do not support load/store with update instructions), use the
d-form instructions to specify an immediate offset from a base array pointer

= For example, consider the following PPE code that exploits the PowerPC store
with update instruction:

#define FILL VEC_FLOAT(_q, _data) *(vector float) (_g++) = _data;
FILL VEC_FLOAT(q, x);
FILL_VEC_FLOAT(q, y);
FILL VEC_FLOAT(q, z);
FILL VEC_FLOAT(q, W)

= The same code can be modified for SPU execution as follows:

#define FILL VEC_FLOAT(_q, _offset, _data) *(vector float) (_g+(_offset)) = _data;
FILL VEC_FLOAT(q, 0, x);

FILL VEC _FLOAT(q, 1, y):

FILL VEC_FLOAT(q, 2, z);

FILL VEC_FLOAT(q, 3, w);

q += 4;

Course Code: L3T2H1-58 Cell Programming Tips & Technigues 06/27/06

Systems and Technology Group

128-Entry Table (8 quadwords)

Shuffle byte instructions for table look-ups

0-15 16 - 31 32-47 48 - 63 64-79 80-95 96- 111 112 - 127 Table Entries
=S e oemmm ommm o Emmmmm S T
[1] [1] 1] C] < shufb using
\ / \ / index bits 3:7
]] selb using
0 < .
selb using
index bit 1
T
| | 32Dyte Table 1 2 3 4 5 6 T

] Quadword (16 bytes)

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

| [T

06/27/06

Systems and Technology Group

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

Course Code: L3T2H1-58 Cell Programming Tips & Techniques

