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Course Objectives

Learn how to vectorize to exploit the power of Cell 
BE

How to partition an application based on PPE or 
SPE resource requirements

How to use intrinsics
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Course Agenda

Vector Programming (SIMD)
– Data types for vector programming

– Application partitioning

SPU Intrinsics

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.
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Vector Programming
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C/C++ Extensions to Support SIMD

Vector datatypes
– vector [unsigned] {char, short, float, double}

• e.g. “vector float”, “vector signed short”, “vector unsigned int”, …
– SIMD width per datatype is implicit in vector datatype definition

– casts from one vector type to another in the usual way

– vectors aligned on quadword (16B) boundaries

Vector pointers
– e.g. “vector float *p”

– p+1 points to the next vector (16B) after that pointed to by p

– casts between scalar and vector pointer types
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Fitting SIMD Data Types into Registers
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Types of Intrinsics

The C/C++ language extension intrinsics are grouped into the 
following three classes:
– Specific Intrinsics

• Intrinsics that have a one-to-one mapping with a single assembly-
language instruction. Programmers rarely need the specific 
intrinsics for implementing inline assembly code because most 
instructions are accessible through generic intrinsics.

• Prefixed by si_ , e.g. si_stop
– Generic Intrinsics and Built-Ins

• Intrinsics that map to one of several assembly-language instructions 
or instruction sequences, depending on the type of operands.

• Prefixed by spu_ , e.g. spu_add
– Composite Intrinsics

• Convenience functions that map to assembly-language instruction 
sequences. A composite intrinsic can be expressed as a sequence 
of generic intrinsics.
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Generic SPU Intrinsics

Generic / Buit-In
– Constant formation (spu_splats)
– Conversion (spu_convtf, spu_convts, ..)
– Arithmetic (spu_add, spu_madd, spu_nmadd, ...)
– Byte operations (spu_absd, spu_avg,...)
– Compare and branch (spu_cmpeq, spu_cmpgt,...)
– Bits and masks (spu_shuffle, spu_sel,...)
– Logical (spu_and, spu_or, ...)
– Shift and rotate (spu_rlqwbyte, spu_rlqw,...)
– Control (spu_stop, spu_ienable, spu_idisable, ...)
– Channel Control (spu_readch, spu_writech,...)
– Scalar (spu_insert, spu_extract, spu_promote)
Composite
– DMA  (spu_mfcdma32, spu_mfcdma64, spu_mfcstat)
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Accessing SIMD instructions

Access to SIMD instructions is via intrinsic functions
– similar intrinsics for both SPU and VMX

– translation from function to instruction dependent on datatype of 
arguments

– e.g. spu_add(a,b) can translate to a floating add, a signed or unsigned 
int add, a signed or unsigned short add, etc.

– Examples
• t_v = spu_mul(t_v, (vector float)spu_splats((float)0.5));
• t_v = spu_sub( (vector float) spu_splats( (float)47.11), t_v);
• t_v = spu_mul( t_v, s_v);
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Vectorizing a Loop – A Simple Example

Loop does term-by-term multiply of two arrays
– arrays assumed here to remain scalar outside of subroutine
If arrays not quadword-aligned, extra work is necessary
If array size is not a multiple of 4, extra work is necessary

/*  scalar version  */

int mult1(float *in1, float *in2, float *out, int N)
{
   int i;

   for (i = 0, i < N, i++)
   {

out[i] = in1[i] * in2[i];
   }

   return 0;

/*  vectorized version   */

int vmult1(float *in1, float *in2, float *out, int N)
{
   /*  assumes that arrays are quadword aligned  */
   /*  assumes that N is divisible by 4  */

   int i, Nv;
   Nv = N >> 2; /* N/4 vectors  */
   vector float *vin1 = (vector float *) (in1);
   vector float *vin2 = (vector float *) (in2);
   vector float *vout = (vector float *) (out);

   for (i = 0, i < Nv, i++)
   {

vout[i] = spu_mul(vin1[i],vin2[i]);
   }

   return 0;
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SIMD Data Partitioning Strategies

Choose SIMD strategy appropriate for algorithm
– vec-across

– parallel-array

• Easy to SIMD – program as if scalar, operating on 4 independent 
objects at a time

• Data must be maintained in separate arrays or SPU must shuffle 
vec-across data into a parallel array form

Consider unrolling affects when picking SIMD strategy
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Complex multiplication

In general, the multiplication of two complex numbers is 
represented by

Or, in code form:

)()())(( bcadibdacidciba ++−=++

/* Given two input arrays with interleaved real and imaginary parts */
float input1[2N], input2[2N], output[2N];

for (int i=0;i<N;i+=2) {
float ac = input1[i]*input2[i];
float bd = input1[i+1]*input2[i+1];
output[i] = (ac – bd);

/*optimized version of (ad+bc) to get rid of a multiply*/
/* (a+b) * (c+d) –ac – bd = ac + ad + bc + bd –ac –bd = ad + bc */             
output[i+1] = (input1[i]+input1[i+1])*(input2[i]+input2[i+1]) - ac - bd; 

}
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Complex Multiplication SPE - Shuffle Vectors

a1 b1 a2 b2A1 a3 b3 a4 b4A2

c1 d1 c2 d2B1 c3 d3 c4 d4B2

0-3 8-11 16-19 24-27I P

4-7 12-15 20-23 28-31Q P
Input Shuffle patterns

I1 = spu_shuffle(A1, A2, I_Perm_Vector); a1 b1 a2 b2A1 a3 b3 a4 b4A2

0-3 8-11 16-19 24-27I P

a1 a2 a3 a4I1

I2 = spu_shuffle(B1, B2, I_Perm_Vector); c1 c2 c3 c4I2

Q1 = spu_shuffle(A1, A2, Q_Perm_Vector); a1 b1 a2 b2A1 a3 b3 a4 b4A2

b1 b2 b3 b4Q1

d1 d2 d3 d4Q2

4-7 12-15 20-23 28-31Q P

Q2 = spu_shuffle(B1, B2, Q_Perm_Vector);

Z1 Z2

By analogy

By analogy

Z3 Z4

W1 W2 W3 W4
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Complex Multiplication
A1 = spu_nmsub(Q1, Q2, v_zero);

A2 = spu_madd(Q1, I2, v_zero);

Q1 = spu_madd(I1, Q2, A2);

I1 = spu_madd(I1, I2, A1);

b1 b2 b3 b4Q1

d1 d2 d3 d4Q2

0 0 0 0Z

*
-

-(b1*d1)A1 -(b2*d2) -(b3*d3) -(b4*d4)

b1 b2 b3 b4Q1

*
+

b1*c1A2 b2*c2 b3*c3 b4*d4

c1 c2 c3 c4I2

0 0 0 0Z

*
+

a1*d1+
b1*c1Q1

a1 a2 a3 a4I1

d1 d2 d3 d4Q2

b1*c1A2 b2*c2 b3*c3 b4*d4

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

*
+

a1*c1-
b1*d1I1

a1 a2 a3 a4I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4

c1 c2 c3 c4I2

-(b1*d1)A1 -(b2*d2) -(b3*d3) -(b4*d4)
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Complex Multiplication – Shuffle Back

D1 = spu_shuffle(I1, Q1, vcvmrgh);

D2 = spu_shuffle(I1, Q1, vcvmrgl); 

a1*d1+
b1*c1Q1

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

a1*c1-
b1*d1I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4 0-3 16-19 4-7 20-23V1

8-11 24-27 12-15 28-31V2
Shuffle patternsResults

a1*d1+
b1*c1Q1

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

a1*c1-
b1*d1I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4

0-3 16-19 4-7 20-23V1

D1
a1*c1-
b1*d1

a1*d1+
b1*c1

a2*c2-
b2*d2

a2*d2+
b2*c2

a1*d1+
b1*c1Q1

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

a1*c1-
b1*d1I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4

D1

8-11 24-27 12-15 28-31V2

a3*c3-
b3*d3

a3*d3+
b3*c3

a4*c4-
b4*d4

a4*d4+
b4*c4
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Complex multiplication – SPE - Summary
vector float A1, A2, B1, B2, I1, I2, Q1, Q2, D1, D2;  

/* in-phase (real), quadrature (imag), temp, and output vectors*/
vector float v_zero = (vector float)(0,0,0,0);

vector unsigned char I_Perm_Vector = (vector unsigned char)(0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27);
vector unsigned char Q_Perm_Vector = (vector unsigned char)(4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31);
vector unsigned char vcvmrgh = (vector unsigned char) (0,1,2,3,16,17,18,19,4,5,6,7,20,21,22,23);
vector unsigned char vcvmrgl = (vector unsigned char) (8,9,10,11,24,25,26,27,12,13,14,15,28,29,30,31);

/* input vectors are in interleaved form in A1,A2 and B1,B2 with each input vector
representing 2 complex numbers and thus this loop would repeat for N/4 iterations

*/    
I1 = spu_shuffle(A1, A2, I_Perm_Vector); /* pulls out 1st and 3rd 4-byte element from vectors A1 and A2 */
I2 = spu_shuffle(B1, B2, I_Perm_Vector); /* pulls out 1st and 3rd 4-byte element from vectors B1 and B2 */
Q1 = spu_shuffle(A1, A2, Q_Perm_Vector); /* pulls out 2nd and 4th 4-byte element from vectors A1 and A2 */
Q2 = spu_shuffle(B1, B2, Q_Perm_Vector); /* pulls out 3rd and 4th 4-byte element from vectors B1 and B2 */
A1 = spu_nmsub(Q1, Q2, v_zero);          /* calculates –(bd – 0) for all four elements */
A2 = spu_madd(Q1, I2, v_zero);           /* calculates (bc + 0) for all four elements */
Q1 = spu_madd(I1, Q2, A2);               /* calculates ad + bc for all four elements */
I1 = spu_madd(I1, I2, A1);               /* calculates ac – bd for all four elements */ 
D1 = spu_shuffle(I1, Q1, vcvmrgh);       /* spreads the results back into interleaved format */
D2 = spu_shuffle(I1, Q1, vcvmrgl);       /* spreads the results back into interleaved format */
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Application Partitioning

Applications must be partitioned across the processing elements
– PPC core, SPEs

Partitioning involves consideration of and trade-offs among:
– processing load

– program structure

– data flow

– data and code movement via DMA

– loading of bus and bus attachments

– desired performance

Several models:
– “PPC-centric” vs. “SPE-centric”

– data-serial / instruction-parallel vs. data-parallel / instruction-serial
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Application Partitioning

PPE centric SPE centric

Multi-stage
pipeline

Parallel
stages

Services
model

Main app on PPE
Individual functions on SPE

Most of app code distributed 
Among SPEs
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“PPC-Centric” & “SPE-Centric” Models

“PPC-Centric”:
– an offload model

– main line application code runs in PPC core

– individual functions extracted and offloaded to SPEs

– SPUs wait to be given work by the PPC core

“SPE-Centric”:
– most of the application code distributed among SPEs

– PPC core runs little more than a resource manager for the SPEs (e.g. 
maintaining in main memory control blocks with work lists for the 
SPEs)

– SPE fetches next work item (what function to execute, pointer to data, 
etc.) from main memory (or its own memory) when it completes 
current work item
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A Pipelined Approach

Data-serial / instruction-parallel

Example:  three function groups, so three SPEs

Dataflow is unidirectional

Synchronization is important
– time spent in each function group should be about the same

– but may complicate tuning and optimization of code

Main data movement is SPE-to-SPE
– can be push or pull

Disadvantages
– Difficulty of load balancing

– Increase in data movements
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A Data-Partitioned Approach

Data-parallel / instruction-serial

Example: data blocks partitioned into three sub-blocks, so three SPEs

May require coordination among SPEs between functions
– e.g. if there is interaction between data sub-blocks

Essentially all data movement is SPE-to main memory or main 
memory-to-SPE
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A Services Approach

Different functions offered as a service

Fixed static allocation should be avoided

Services should be virtulized and managed on a demand-
initiated basis

SPE

Data Encryption

SPE

MPEG Encoding

SPE

Curve Analysis

PPE

Application Code
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