
Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD1

Vector Programming and
Application Partitioning
for the Cell BE

Course Code: L3T2H1-52
Cell Ecosystem Solutions Enablement

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD2

Course Objectives

Learn how to vectorize to exploit the power of Cell
BE

How to partition an application based on PPE or
SPE resource requirements

How to use intrinsics

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD3

Course Agenda

Vector Programming (SIMD)
– Data types for vector programming

– Application partitioning

SPU Intrinsics

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD4

Vector Programming

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD5

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD6

C/C++ Extensions to Support SIMD

Vector datatypes
– vector [unsigned] {char, short, float, double}

• e.g. “vector float”, “vector signed short”, “vector unsigned int”, …
– SIMD width per datatype is implicit in vector datatype definition

– casts from one vector type to another in the usual way

– vectors aligned on quadword (16B) boundaries

Vector pointers
– e.g. “vector float *p”

– p+1 points to the next vector (16B) after that pointed to by p

– casts between scalar and vector pointer types

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD7

Fitting SIMD Data Types into Registers

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD8

Types of Intrinsics

The C/C++ language extension intrinsics are grouped into the
following three classes:
– Specific Intrinsics

• Intrinsics that have a one-to-one mapping with a single assembly-
language instruction. Programmers rarely need the specific
intrinsics for implementing inline assembly code because most
instructions are accessible through generic intrinsics.

• Prefixed by si_ , e.g. si_stop
– Generic Intrinsics and Built-Ins

• Intrinsics that map to one of several assembly-language instructions
or instruction sequences, depending on the type of operands.

• Prefixed by spu_ , e.g. spu_add
– Composite Intrinsics

• Convenience functions that map to assembly-language instruction
sequences. A composite intrinsic can be expressed as a sequence
of generic intrinsics.

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD9

Generic SPU Intrinsics

Generic / Buit-In
– Constant formation (spu_splats)
– Conversion (spu_convtf, spu_convts, ..)
– Arithmetic (spu_add, spu_madd, spu_nmadd, ...)
– Byte operations (spu_absd, spu_avg,...)
– Compare and branch (spu_cmpeq, spu_cmpgt,...)
– Bits and masks (spu_shuffle, spu_sel,...)
– Logical (spu_and, spu_or, ...)
– Shift and rotate (spu_rlqwbyte, spu_rlqw,...)
– Control (spu_stop, spu_ienable, spu_idisable, ...)
– Channel Control (spu_readch, spu_writech,...)
– Scalar (spu_insert, spu_extract, spu_promote)
Composite
– DMA (spu_mfcdma32, spu_mfcdma64, spu_mfcstat)

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD10

Accessing SIMD instructions

Access to SIMD instructions is via intrinsic functions
– similar intrinsics for both SPU and VMX

– translation from function to instruction dependent on datatype of
arguments

– e.g. spu_add(a,b) can translate to a floating add, a signed or unsigned
int add, a signed or unsigned short add, etc.

– Examples
• t_v = spu_mul(t_v, (vector float)spu_splats((float)0.5));
• t_v = spu_sub((vector float) spu_splats((float)47.11), t_v);
• t_v = spu_mul(t_v, s_v);

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD11

Vectorizing a Loop – A Simple Example

Loop does term-by-term multiply of two arrays
– arrays assumed here to remain scalar outside of subroutine
If arrays not quadword-aligned, extra work is necessary
If array size is not a multiple of 4, extra work is necessary

/* scalar version */

int mult1(float *in1, float *in2, float *out, int N)
{
 int i;

 for (i = 0, i < N, i++)
 {

out[i] = in1[i] * in2[i];
 }

 return 0;

/* vectorized version */

int vmult1(float *in1, float *in2, float *out, int N)
{
 /* assumes that arrays are quadword aligned */
 /* assumes that N is divisible by 4 */

 int i, Nv;
 Nv = N >> 2; /* N/4 vectors */
 vector float *vin1 = (vector float *) (in1);
 vector float *vin2 = (vector float *) (in2);
 vector float *vout = (vector float *) (out);

 for (i = 0, i < Nv, i++)
 {

vout[i] = spu_mul(vin1[i],vin2[i]);
 }

 return 0;

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD12

SIMD Data Partitioning Strategies

Choose SIMD strategy appropriate for algorithm
– vec-across

– parallel-array

• Easy to SIMD – program as if scalar, operating on 4 independent
objects at a time

• Data must be maintained in separate arrays or SPU must shuffle
vec-across data into a parallel array form

Consider unrolling affects when picking SIMD strategy

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD13

Complex multiplication

In general, the multiplication of two complex numbers is
represented by

Or, in code form:

)()())((bcadibdacidciba ++−=++

/* Given two input arrays with interleaved real and imaginary parts */
float input1[2N], input2[2N], output[2N];

for (int i=0;i<N;i+=2) {
float ac = input1[i]*input2[i];
float bd = input1[i+1]*input2[i+1];
output[i] = (ac – bd);

/*optimized version of (ad+bc) to get rid of a multiply*/
/* (a+b) * (c+d) –ac – bd = ac + ad + bc + bd –ac –bd = ad + bc */
output[i+1] = (input1[i]+input1[i+1])*(input2[i]+input2[i+1]) - ac - bd;

}

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD14

Complex Multiplication SPE - Shuffle Vectors

a1 b1 a2 b2A1 a3 b3 a4 b4A2

c1 d1 c2 d2B1 c3 d3 c4 d4B2

0-3 8-11 16-19 24-27I P

4-7 12-15 20-23 28-31Q P
Input Shuffle patterns

I1 = spu_shuffle(A1, A2, I_Perm_Vector); a1 b1 a2 b2A1 a3 b3 a4 b4A2

0-3 8-11 16-19 24-27I P

a1 a2 a3 a4I1

I2 = spu_shuffle(B1, B2, I_Perm_Vector); c1 c2 c3 c4I2

Q1 = spu_shuffle(A1, A2, Q_Perm_Vector); a1 b1 a2 b2A1 a3 b3 a4 b4A2

b1 b2 b3 b4Q1

d1 d2 d3 d4Q2

4-7 12-15 20-23 28-31Q P

Q2 = spu_shuffle(B1, B2, Q_Perm_Vector);

Z1 Z2

By analogy

By analogy

Z3 Z4

W1 W2 W3 W4

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD15

Complex Multiplication
A1 = spu_nmsub(Q1, Q2, v_zero);

A2 = spu_madd(Q1, I2, v_zero);

Q1 = spu_madd(I1, Q2, A2);

I1 = spu_madd(I1, I2, A1);

b1 b2 b3 b4Q1

d1 d2 d3 d4Q2

0 0 0 0Z

*
-

-(b1*d1)A1 -(b2*d2) -(b3*d3) -(b4*d4)

b1 b2 b3 b4Q1

*
+

b1*c1A2 b2*c2 b3*c3 b4*d4

c1 c2 c3 c4I2

0 0 0 0Z

*
+

a1*d1+
b1*c1Q1

a1 a2 a3 a4I1

d1 d2 d3 d4Q2

b1*c1A2 b2*c2 b3*c3 b4*d4

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

*
+

a1*c1-
b1*d1I1

a1 a2 a3 a4I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4

c1 c2 c3 c4I2

-(b1*d1)A1 -(b2*d2) -(b3*d3) -(b4*d4)

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD16

Complex Multiplication – Shuffle Back

D1 = spu_shuffle(I1, Q1, vcvmrgh);

D2 = spu_shuffle(I1, Q1, vcvmrgl);

a1*d1+
b1*c1Q1

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

a1*c1-
b1*d1I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4 0-3 16-19 4-7 20-23V1

8-11 24-27 12-15 28-31V2
Shuffle patternsResults

a1*d1+
b1*c1Q1

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

a1*c1-
b1*d1I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4

0-3 16-19 4-7 20-23V1

D1
a1*c1-
b1*d1

a1*d1+
b1*c1

a2*c2-
b2*d2

a2*d2+
b2*c2

a1*d1+
b1*c1Q1

a2*d2+
b2*c2

a3*d3+
b3*c3

a4*d4+
b4*c4

a1*c1-
b1*d1I1

a2*c2-
b2*d2

a3*c3-
b3*d3

a4*c4-
b4*d4

D1

8-11 24-27 12-15 28-31V2

a3*c3-
b3*d3

a3*d3+
b3*c3

a4*c4-
b4*d4

a4*d4+
b4*c4

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD17

Complex multiplication – SPE - Summary
vector float A1, A2, B1, B2, I1, I2, Q1, Q2, D1, D2;

/* in-phase (real), quadrature (imag), temp, and output vectors*/
vector float v_zero = (vector float)(0,0,0,0);

vector unsigned char I_Perm_Vector = (vector unsigned char)(0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27);
vector unsigned char Q_Perm_Vector = (vector unsigned char)(4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31);
vector unsigned char vcvmrgh = (vector unsigned char) (0,1,2,3,16,17,18,19,4,5,6,7,20,21,22,23);
vector unsigned char vcvmrgl = (vector unsigned char) (8,9,10,11,24,25,26,27,12,13,14,15,28,29,30,31);

/* input vectors are in interleaved form in A1,A2 and B1,B2 with each input vector
representing 2 complex numbers and thus this loop would repeat for N/4 iterations

*/
I1 = spu_shuffle(A1, A2, I_Perm_Vector); /* pulls out 1st and 3rd 4-byte element from vectors A1 and A2 */
I2 = spu_shuffle(B1, B2, I_Perm_Vector); /* pulls out 1st and 3rd 4-byte element from vectors B1 and B2 */
Q1 = spu_shuffle(A1, A2, Q_Perm_Vector); /* pulls out 2nd and 4th 4-byte element from vectors A1 and A2 */
Q2 = spu_shuffle(B1, B2, Q_Perm_Vector); /* pulls out 3rd and 4th 4-byte element from vectors B1 and B2 */
A1 = spu_nmsub(Q1, Q2, v_zero); /* calculates –(bd – 0) for all four elements */
A2 = spu_madd(Q1, I2, v_zero); /* calculates (bc + 0) for all four elements */
Q1 = spu_madd(I1, Q2, A2); /* calculates ad + bc for all four elements */
I1 = spu_madd(I1, I2, A1); /* calculates ac – bd for all four elements */
D1 = spu_shuffle(I1, Q1, vcvmrgh); /* spreads the results back into interleaved format */
D2 = spu_shuffle(I1, Q1, vcvmrgl); /* spreads the results back into interleaved format */

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD18

Application Partitioning

Applications must be partitioned across the processing elements
– PPC core, SPEs

Partitioning involves consideration of and trade-offs among:
– processing load

– program structure

– data flow

– data and code movement via DMA

– loading of bus and bus attachments

– desired performance

Several models:
– “PPC-centric” vs. “SPE-centric”

– data-serial / instruction-parallel vs. data-parallel / instruction-serial

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD19

Application Partitioning

PPE centric SPE centric

Multi-stage
pipeline

Parallel
stages

Services
model

Main app on PPE
Individual functions on SPE

Most of app code distributed
Among SPEs

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD20

“PPC-Centric” & “SPE-Centric” Models

“PPC-Centric”:
– an offload model

– main line application code runs in PPC core

– individual functions extracted and offloaded to SPEs

– SPUs wait to be given work by the PPC core

“SPE-Centric”:
– most of the application code distributed among SPEs

– PPC core runs little more than a resource manager for the SPEs (e.g.
maintaining in main memory control blocks with work lists for the
SPEs)

– SPE fetches next work item (what function to execute, pointer to data,
etc.) from main memory (or its own memory) when it completes
current work item

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD21

A Pipelined Approach

Data-serial / instruction-parallel

Example: three function groups, so three SPEs

Dataflow is unidirectional

Synchronization is important
– time spent in each function group should be about the same

– but may complicate tuning and optimization of code

Main data movement is SPE-to-SPE
– can be push or pull

Disadvantages
– Difficulty of load balancing

– Increase in data movements

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD22

A Data-Partitioned Approach

Data-parallel / instruction-serial

Example: data blocks partitioned into three sub-blocks, so three SPEs

May require coordination among SPEs between functions
– e.g. if there is interaction between data sub-blocks

Essentially all data movement is SPE-to main memory or main
memory-to-SPE

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD23

A Services Approach

Different functions offered as a service

Fixed static allocation should be avoided

Services should be virtulized and managed on a demand-
initiated basis

SPE

Data Encryption

SPE

MPEG Encoding

SPE

Curve Analysis

PPE

Application Code

Systems and Technology Group

06/27/06Course Code: L3T2H1-52 Vector Programming SIMD24

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

