
Systems and Technology Group

Course Code: L2T1H1-11 Cell Software Model 06/27/06 © 2006 IBM Corporation

Cell Software Model

Course Code: L2T1H1-11
Cell Ecosystem Solutions Enablement

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/062

Class Objectives – Things you will learn

Cell software considerations including
• Two levels of parallelism: SIMD and parallel task execution
• Computational

– Multicore
– Multithreading
– Multiple local store accesses

• Commutational
– DMA and bus bandwidth
– Traffic control
– Shared memory/message passing
– Synchronization

Programming models that exploit cell features

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/063

Class Agenda

Cell Software Design Considerations
Cell Programming Model Overview
PPE Programming Models
SPE Programming Models
Parallel Programming Models
Multi-tasking SPEs
Cell Software Development Flow

References
Michael Day, Ted Maeurer, and Alex Chow, Cell Software Overview

Trademarks
Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/064

CELL software design considerations
Two Levels of Parallelism
– Regular vector data that is SIMD-able

– Independent tasks that may be executed in parallel

Computational
– SIMD engines on 8 SPEs and 1 PPE (multi-threaded)

– Parallel sequence to be distributed over 8 SPE / 1 PPE

– 256KB local store per SPE usage (data + code)

Communicational
– DMA and Bus bandwidth

• DMA granularity – 128 bytes
• DMA bandwidth among LS and System memory

– Traffic control
• Exploit computational complexity and data locality to lower data traffic requirement

– Shared memory / Message passing abstraction overhead

– Synchronization

– DMA latency handling

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/065

The role of Cell programming models

Cell provides a massive computational capacity.

Cell provides a huge communicational bandwidth.

The resources are distributed.

A properly selected Cell programming model provides a
programmer a systematic and cost-effective framework to
apply Cell resources to a particular class of applications.

A Cell programming model may be supported by language
constructs, runtime, libraries, or object-oriented frameworks.

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/066

Cell programming models

SPE LS

SPE LS

PPE thread

Large small

Multi-SPE

BE-level

Effective Address
Space

Single Cell environment:

PPE programming models

SPE Programming models
– Small single-SPE models

– Large single-SPE models

– Multi-SPE parallel
programming models

Cell Embedded SPE
Object Format (CESOF)

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/067

Cell programming models - continued

Multi-tasking SPEs
– Local Store resident multi-tasking

– Self-managed multi-tasking

– Kernel-managed SPE scheduling and virtualization

Application development flow

Final programming model points

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/068

PPE programming model (participation)
PPE is a 64-bit PowerPC core, hosting operating systems and
hypervisor
PPE program inherits traditional programming models
Cell environment: a PPE program serves as a controller or facilitator
– CESOF support provides SPE image handles to the PPE runtime
– PPE program establishes a runtime environment for SPE programs

• e.g. memory mapping, exception handling, SPE run control
– It allocates and manages Cell system resources

• SPE scheduling, hypervisor CBEA resource management
– It provides OS services to SPE programs and threads

• e.g. printf, file I/O

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/069

Small single-SPE models
Single tasked environment
Small enough to fit into a 256KB- local store
Sufficient for many dedicated workloads
Separated SPE and PPE address spaces – LS / EA
Explicit input and output of the SPE program
– Program arguments and exit code per SPE ABI
– DMA
– Mailboxes
– SPE side system calls
Foundation for a function offload model or a synchronous
RPC model
– Facilitated by interface description language (IDL)

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0610

Small single-SPE models – tools and environment

SPE compiler/linker compiles and links an SPE executable

The SPE executable image is embedded as reference-able
RO data in the PPE executable (CESOF)

A Cell programmer controls an SPE program via a PPE
controlling process and its SPE management library

– i.e. loads, initializes, starts/stops an SPE program

The PPE controlling process, OS/PPE, and runtime/(PPE or
SPE) together establish the SPE runtime environment, e.g.
argument passing, memory mapping, system call service.

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0611

Small single-SPE models – a sample

/* spe_foo.c:
* A C program to be compiled into an executable called “spe_foo”
*/

int main(int speid, addr64 argp, addr64 envp)
{
char i;

/* do something intelligent here */
i = func_foo (argp);

/* when the syscall is supported */
printf(“Hello world! my result is %d \n”, i);

return i;
}

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0612

Small single-SPE models – PPE controlling program

extern spe_program_handle spe_foo; /* the spe image handle from
CESOF */

int main()
{
int rc, status;
speid_t spe_id;

/* load & start the spe_foo program on an allocated spe */
spe_id = spe_create_thread (0, &spe_foo, 0, NULL, -1, 0);

/* wait for spe prog. to complete and return final status */
rc = spe_wait (spe_id, &status, 0);

return status;
}

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0613

Large single-SPE programming models

Data or code working set
cannot fit completely into a
local store
The PPE controlling process,
kernel, and libspe runtime set
up the system memory
mapping as SPE’s secondary
memory store
The SPE program accesses the
secondary memory store via its
software-controlled SPE DMA
engine - Memory Flow
Controller (MFC)

SPE
Program

System Memory

PPE controller
maps system
memory for

SPE DMA trans.

Local Store

DMA
transactions

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0614

Large single-SPE programming models – I/O data

System memory for large size input / output data
– e.g. Streaming model

int g_ip[512*1024]

System memory

int g_op[512*1024]

int ip[32]

int op[32]

SPE program: op = func(ip)

DMA

DMA

Local store

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0615

Large single-SPE programming models

System memory as secondary memory store
– Manual management of data buffers

– Automatic software-managed data cache
• Software cache framework libraries
• Compiler runtime support

Global objects

System memory

SW cache entries
SPE program

Local store

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0616

Large single-SPE programming models

System memory as secondary memory store
– Manual loading of plug-in into code buffer

• Plug-in framework libraries
– Automatic software-managed code overlay

• Compiler generated overlaying code System memory

Local store

SPE plug-in b

SPE plug-in a

SPE plug-in e

SPE plug-in a

SPE plug-in b

SPE plug-in c

SPE plug-in d

SPE plug-in e

SPE plug-in f

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0617

Large single-SPE prog. models – Job Queue

Code and data packaged
together as inputs to an SPE
kernel program

A multi-tasking model
– more discussion later

Job queue

System memory

Local store

code/data n
code/data n+1
code/data n+2

code/data …

Code n
Data n

SPE kernel

DMA

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0618

Large single-SPE programming models - DMA

DMA latency handling is critical to overall performance for SPE
programs moving large data or code
Data pre-fetching is a key technique to hide DMA latency
– e.g. double-buffering

Time

I Buf 1 (n) O Buf 1 (n)

I Buf 2 (n+1) O Buf 2 (n-1)

SPE program: Func (n)

outputn-2 inputn Outputn-1

Func (inputn)

Inputn+1

Func (inputn+1)Func (inputn-1)

outputn Inputn+2DMAs

SPE exec.

DMAs

SPE exec.

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0619

Large single-SPE programming models - CESOF
Cell Embedded SPE Object Format (CESOF) and PPE/SPE
toolchains support the resolution of SPE references to the
global system memory objects in the effective-address
space.

_EAR_g_foo structure

Local Store Space

Effective Address Space

Char g_foo[512]

Char local_foo[512]

DMA
transactions

CESOF EAR
symbol resolution

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0620

Parallel programming models

Traditional parallel programming models applicable

Based on interacting single-SPE programs

Parallel SPE program synchronization mechanism
• Cache line-based MFC atomic update commands similar to the

PowerPC lwarx, ldarx, stwcx, and stdcx instructions
• SPE input and output mailboxes with PPE
• SPE signal notification / register
• SPE events and interrupts
• SPE busy poll of shared memory location

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0621

Parallel programming models – Shared Memory

Access data by address
– Random access in nature

CESOF support for shared effective-address variables

With proper locking mechanism, large SPE programs may
access shared memory objects located in the effective-
address space

Compiler OpenMP support

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0622

Parallel programming models – Streaming

Large array of data fed
through a group of SPE
programs

A special case of job queue
with regular data

Each SPE program locks on
the shared job queue to
obtain next job

For uneven jobs, workloads
are self-balanced among
available SPEs

PPE

SPE1
Kernel()

SPE0
Kernel()

SPE7
Kernel()

System Memory

In

.
I7

I6

I5

I4

I3

I2

I1

I0

On

.
O7

O6

O5

O4

O3

O2

O1

O0

…..

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0623

Parallel programming models – Message Passing

Access data by connection

– Sequential in nature

Applicable to SPE programs where addressable data space
only spans over local store

The message connection is still built on top of the shared
memory model

Compared with software-cache shared memory model
– More efficient runtime is possible, no address info handling overhead

once connected

– LS to LS DMA optimized for data streaming through pipeline model

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0624

Parallel programming models – Pipeline

Use LS to LS DMA
bandwidth, not system
memory bandwidth

Flexibility in connecting
pipeline functions

Larger collective code
size per pipeline

Load-balance is harder
PPE

SPE1
Kernel1()

SPE0
Kernel0()

SPE7
Kernel7()

System Memory

In

.

.
I6

I5

I4

I3

I2

I1

I0

On

.

.
O6

O5

O4

O3

O2

O1

O0

…..
DMA DMA

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0625

Multi-tasking SPEs – LS resident multi-tasking

Simplest multi-tasking
programming model

No memory protection
among tasks

Co-operative, Non-
preemptive, event-
driven scheduling

a
c
a
d
x
a
c
d

Task a

Task b

Task c

Task d

Task x

Event
Dispatcher

Local Store

SPE n

Event Queue

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0626

Multi-tasking SPEs – Self-managed multi-tasking

Non-LS resident

Blocked job context is swapped
out of LS and scheduled back
later to the job queue once
unblocked

Job queue

System memory

Local store

task n
task n+1
task n+2

Task …

Code n
Data n

SPE kernel
task n’

task queue

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0627

Multi-tasking SPEs – Kernel managed

Kernel-level SPE management model
– SPE as a device resource
– SPE as a heterogeneous processor
– SPE resource represented as a file system

SPE scheduling and virtualization
– Maps running threads over a physical SPE or a group of SPEs
– More concurrent logical SPE tasks than the number of physical SPEs
– High context save/restore overhead

• favors run-to-completion scheduling policy
– Supports pre-emptive scheduling when needed
– Supports memory protection

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0628

Typical CELL Software Development Flow

Algorithm complexity study
Data layout/locality and Data flow analysis
Experimental partitioning and mapping of the algorithm and
program structure to the architecture
Develop PPE Control, PPE Scalar code
Develop PPE Control, partitioned SPE scalar code
– Communication, synchronization, latency handling
Transform SPE scalar code to SPE SIMD code
Re-balance the computation / data movement
Other optimization considerations
– PPE SIMD, system bottle-neck, load balance

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0629

Programming Model Final Points
A proper programming model reduces development cost
while achieving higher performance
Programming frameworks and abstractions help with
productivity
Mixing programming models are common practice
New models may be developed for particular applications.
With the vast computational capacity, it is not hard to
achieve a performance gain from an existing legacy base
Top performance is harder
Tools are critical in improving programmer productivity

Systems and Technology Group

© 2006 IBM CorporationCourse Code: L2T1H1-11 Cell Software Model 06/27/0630

(c) Copyright International Business Machines Corporation 2006.
All Rights Reserved. Printed in the United Sates September 2006.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

