Table of Contents

Laborator 02 - Noțiuni de C++

Responsabili

Obiective

În urma parcurgerii acestui laborator studentul va:

Templates

Motivul principal pentru care folosim C++ în cadrul SD este datorită funcționalității oferite de template-uri.

Acestea permit generalizarea tipurilor de date folosite în interiorul funcțiilor și claselor.

Sintaxa pentru acestea este:

template <class identifier> declaratie;
template <typename identifier> declaratie;

declaratie poate fi fie o funcție, fie o clasă. Nu există nicio diferență între keyword-ul class și typename - important este că ceea ce urmează după ele este un placeholder pentru un tip de date.

Function Template

În primul rând template-urile pot fi aplicate funcțiilor.

Un exemplu comun și simplu este următorul:

template<typename T>
T getMax(T a, T b) {
    return a > b ? a : b;
}

Funcția poate fi apelată astfel:

getMax<int>(2, 3);
getMax<double>(3.2, 4.6);

Class Template

Concret, să presupunem că avem o clasă numită KeyStorage care are:

Vrem să putem folosi codul clasei indiferent de tipul de date al membrului.

Iată cum putem face acest lucru:

KeyStorage.h
template<typename T>
class KeyStorage {
public:
    int key;
    T member;
};

În funcția main, să presupunem că vrem să folosim clasa cu membrul de tip long.

main.cpp
#include "KeyStorage.h"
 
int main() {
    KeyStorage<long> keyElement;
    return 0;
}

Practic, oriunde folosim tipul de date T în clasă, este înlocuit cu tipul pe care îl specificăm.

Where's the magic happening?

Sunt destul de multe lucruri de spus despre template-uri, dar ne vom concentra pe lucrurile care schimbă modul în care ați implementat până acum.

Template-urile sunt de fapt indicii pentru compilator pentru a genera cod la rândul lui! Practic, voi îi spuneți compilatorului un șablon generic pe care ați vrea să-l folosiți și el trebuie să fie pregătit să îl pună la dispoziția voastră când aveți nevoie.

Ce trebuie să rețineți din asta? Totul se întâmplă la compile time, nu la run time.

Compilatorul practic analizează modul în care voi folosiți clasa respectivă și generează pentru fiecare mod în care o folosiți șablonul corespunzător. Folosirea KeyStorage<int> și KeyStorage<float> determină compilatorul să genereze cod pentru ambele clase (înlocuind o dată T cu int și altă cu float).

Guideline-uri implementare

Pentru că totul se întâmplă la compile time, înseamnă că în momentul în care compilatorul întâlnește secvența de cod ce folosește template-uri trebuie să știe toate modurile în care aceasta este folosita.

Asta înseamnă că:

Ultimul rând de fapt forțează folosirea template-ului cu un anumit tip de date și deci compilatorul generează cod corespunzător (trebuie să scrieți asta pentru toate tipurile).

Clasa KeyStorage

Iată mai jos o structură mai dezvoltată pentru clasa KeyStorage, în care cheia este setată în constructor. .

KeyStorage.h
template<typename T>
class KeyStorage {
public:
    KeyStorage(int k);
    ~KeyStorage();
 
    T getMember();
    T setMember(T element);
 
private:
    T member;
    int key;
};

Implementarea completa a ei poate fi realizată:

KeyStorage.cpp
#include "KeyStorage.h"
 
template<typename T>
KeyStorage<T>::KeyStorage(int k) {
//TODO
}
 
template<typename T>
KeyStorage<T>::~KeyStorage() {
}
 
//TODO: restul metodelor.
 
// La sfarsit, cu tipurile de date pe care le veti folosi.
template class KeyStorage<int>;
template class KeyStorage<long>;

Referințe

In C++ există două modalități de a lucra cu adrese de memorie:

Referinţa poate fi privită ca un pointer constant inteligent, a cărui iniţializare este forţată de către compilator (la definire) şi care este dereferenţiat automat.

Semantic, referințele reprezintă aliasuri ale unor variabile existente. La crearea unei referinţe, aceasta trebuie iniţializată cu adresa unui obiect (nu cu o valoare constantă).

Sintaxa pentru declararea unei referințe este:

  tip& referinta = valoare;

Exemplu:

    int x=1, y=2;
    int& rx = x; //referinta
    rx = 4; //modificarea variabilei prin referinta
    rx = 15; //modificarea variabilei prin referinta
    rx =y; //atribuirea are ca efect copierea continutului 
           //din y in x si nu modificarea adresei referintei

Spre deosebire de pointeri:

Referinţele se folosesc:

Motivul pentru aceste tipuri de utilizări este unul destul de simplu: când se transmit parametrii funcțiilor, se copiază conținutul variabilelor transmise pe stivă, lucru destul de costisitor. Prin transmiterea de referințe, nu se mai copiază nimic, așadar intrarea sau ieșirea dintr-o funcție sunt mult mai putin costisitoare.

Keyword const

În C++, există mai multe întrebuințări ale cuvântului cheie const:

Pentru a specifica, un obiect a cărui valoare nu poate fi modificată, const se poate folosi în următoarele feluri:

Orice obiect constant poate apela doar funcții declarate constante. O funcție constantă se declară folosind sintaxa:

     void fct_nu_modifica_obiect() const; //am utilizat cuvântul cheie const
                       //dupa declarația funcției fct_nu_modifica_obiect

Această declaratie a functiei garantează faptul că obiectul pentru care va fi apelată nu se va modifica.

Regula de bază a apelării membrilor de tip funcție ai claselor este:

Exemple:

//declarație
class Complex {
private:
    int re;
    int im;
public:
    Complex();
    int GetRe() const;
    int GetIm() const;
    void SetRe(int re);
    void SetIm(int im);
};
 
 
//apelare
Complex c1;
const Complex c2;
c1.GetRe();   //corect
c1.SetRe(5);  //corect
c2.GetRe();   //corect
c2.SetRe(5);  //incorect

Funcții care returnează referințe

Pentru clasa Complex, definim funcţiile care asigură accesul la partea reală, respectiv imaginară a unui număr complex:

 double getRe(){ return re; }
 double getIm(){ return im; }

Dacă am dori modificarea părţii reale a unui număr complex printr-o atribuire de forma:

 z.getRe()=2.;

constatăm că funcţia astfel definită nu poate apărea în partea stângă a unei atribuiri.

Acest neajuns se remediază impunând funcţiei să returneze o referinţă la obiect, adică:

 double& getRe(){ return re; }

Codul de mai sus returnează o referință către membrul re al obiectului Complex z, așadar orice atribuire efectuată asupra acestui câmp va fi vizibilă și în obiect.

Exerciții

Bibliografie