2025/06/06 15:36 1/6 Radar Guard

Radar Guard

Introduction

This project is a radar-like security system that detects objects using an ultrasonic sensor. Its main
purpose is to monitor an area and alert when an object is detected nearby. The idea started from the
concept of creating a simple motion detection system using basic electronic components and Arduino.
| believe it is useful for others and for myself because it teaches how to integrate sensors, LEDs, a
buzzer, a servomotor, and an LCD display into one functional project, while also being a practical
solution for learning about automation and basic security systems.

General Description

This project is a radar-based security system using an ultrasonic sensor and servomotor to detect
nearby objects and give visual and audio alerts. When no object is detected, two green LEDs are lit.
When an object is detected within a certain range, the system lights two red LEDs, sounds a buzzer,
and displays “Object Detected” on the LCD screen. The sensor continuously scans the area by
rotating with the help of a servomotor.

(]

Ultrasonic Sensor

- Detects the distance of objects by emitting sound waves and measuring the time it takes for the
echo to return. Mounted on a servomotor to sweep the detection area.
- Function:
> The Arduino sends a trigger pulse through pin 11.
» The sensor sends out a sound wave, and when it bounces back, the echo is received on pin 10.
» The time taken for the echo determines the distance to an object.

Arduino Board (UNO)

- Acts as the main controller, processing data and driving outputs like LEDs, buzzer, LCD, and servo.
- Function:

= Acts as the central controller for the entire system.

- Reads distance data from the ultrasonic sensor.

- Processes logic to decide if an object is detected or not.

= Controls outputs: turns LEDs on/off, activates the buzzer, moves the servomotor.

- Communicates with the LCD to display messages like “Object Detected”.

- Ensures timing and coordination of all components in the system.

LCD Display (12C)

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/vradulescu/block_diagram.png?id=pm:prj2025:vradulescu:alexandra.ionita03

Last update: 2025/05/23

14:50 pm:prj2025:vradulescu:alexandra.ionita03 http://ocw.cs.pub.ro/courses/pm/prj2025/vradulescu/alexandra.ionita03

- Shows status messages like “Object Detected” or “Area is Empty”.
- Function:

- Communicates with the Arduino via 12C.

- Displays messages based on sensor input.

LEDs (Red and Green)

- Red indicates detection; green indicates clear area.

- Function:
- Red LEDs are turned on when an object is detected within a certain distance.
» Green LEDs are turned on when no object is detected.
- Visual alert for danger/obstacle detection/area is clear.

Buzzer

- Emits sound when object is detected.
- Function:
= Works as an audio alert alongside red LEDs.

Servomotor

- Rotates the ultrasonic sensor to scan.
- Function:
> Controlled by the Arduino to sweep the ultrasonic sensor left and right.
» The sweep allows scanning across a wide area, making detection more dynamic.

1k Resistors

- 1kQ resistors are used to limit current flowing through the LEDs.

- They protect the LEDs from burning out due to excess current.

- They prevent the Arduino pins from delivering too much current (which could damage them).
- Based on Ohm’s Law, 1kQ keeps the current around 3 mA, which is safe.

Hardware Design

=]
Name Connection (pins) Link
Ultrasonic Sensor HC-SR04 TRIG - 11, ECHO- 10 Ultrasonic Sensor
Servomotor Metalic Digital MG996|Signal - 12 Servomotor
LCD Display LCD 1602 with 2C |SDA - A4, SCL —» A5 LCD Display
Red LEDs Anodes connected together - 3|LEDs
Green LEDs Anodes connected together —» 4|LEDs
Buzzer Positive - 2 Pasive Buzzer
Arduino UNO - Kit Plusivo Microcontroller Starter

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/06 15:36

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/vradulescu/wiring.png?id=pm:prj2025:vradulescu:alexandra.ionita03
https://www.optimusdigital.ro/ro/senzori-senzori-ultrasonici/9-senzor-ultrasonic-hc-sr04-.html?search_query=ultrasonic sensor&results=6
https://www.optimusdigital.ro/ro/motoare-servomotoare/1520-servomotor-metalic-digital-mg996-90.html?search_query=Servomotor Metalic Digital MG996 (90°)&results=2
https://www.optimusdigital.ro/ro/optoelectronice-lcd-uri/2894-lcd-cu-interfata-i2c-si-backlight-albastru.html?search_query=LCD 1602 cu Interfata I2C si Backlight Albastru&results=2
https://www.optimusdigital.ro/ro/kituri-optimus-digital/9517-set-de-led-uri-asortate-de-5-mm-si-3-mm-310-buc-cu-rezistoare-bonus.html?search_query=leduri&results=59
https://www.optimusdigital.ro/ro/kituri-optimus-digital/9517-set-de-led-uri-asortate-de-5-mm-si-3-mm-310-buc-cu-rezistoare-bonus.html?search_query=leduri&results=59
https://www.optimusdigital.ro/ro/audio-buzzere/12247-buzzer-pasiv-de-33v-sau-3v.html?search_query=buzzer&results=62
https://www.optimusdigital.ro/ro/kituri/12333-kit-plusivo-microcontroller-starter.html?search_query=Kit Plusivo Microcontroller Starter&results=2

2025/06/06 15:36 3/6 Radar Guard

Software Design

Development Environment
The application was developed using the Arduino IDE.
Libraries and 3rd-Party Sources

1. Servo.h: library for controlling servo motors. It handles the PWM signal generation required for
precise positioning of the servo.

2. Wire.h: 12C communication library. This provides the low-level functions needed for communicating
with 12C devices like the LCD display.

3. LiquidCrystal_I2C.h: A third-party library that builds upon Wire.h to provide high-level functions for
controlling 12C LCD displays. It simplifies the process of initializing, writing to, and controlling the
backlight of the LCD.

4. avr/interrupt.h: Part of the AVR-libc, this header provides interrupt-related functions and definitions
for the AVR microcontroller, enabling the implementation of interrupt service routines.

Algorithms and Structures Implemented
1. Interrupt-Driven Sensor Reading

I implemented a timer-based interrupt system to handle the ultrasonic sensor readings at regular
intervals without blocking the main program flow:

- Timer2 Configuration: Timer2 is configured in CTC (Clear Timer on Compare Match) mode to
generate interrupts at approximately 100Hz.

- Sensor Reading Timing: A counter within the ISR ensures that the ultrasonic sensor is only read
approximately once per second, reducing unnecessary processing.

- Distance Calculation: The time duration between sending and receiving the ultrasonic pulse is
converted to distance using the speed of sound formula.

2. Non-Blocking State Machine

Rather than using blocking delay functions, | implemented a non-blocking state machine using the
millis() function:

- Component-Specific Timers: Separate timing variables and intervals for each component (LCD, servo,
LED flashing)

- Flag-Based Updates: The ISR sets a flag when new sensor data is available, which the main loop
checks to determine if display updates are needed

- Time-Based Actions: Each component is updated only when its specific time interval has elapsed

3. Object Detection Algorithm
A simple threshold-based detection algorithm determines the presence of objects:

- Distance Threshold: Objects closer than 15cm are considered “detected”
- State Management: The system maintains and responds to an “objectDetected” state variable

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Last update: 2025/05/23

14:50 pm:prj2025:vradulescu:alexandra.ionita03 http://ocw.cs.pub.ro/courses/pm/prj2025/vradulescu/alexandra.ionita03

- Validation Check: Only positive, non-zero distances are considered valid to filter out sensor errors
4. Servo Scanning Algorithm
I implemented a continuous scanning motion for the servo motor in “safe” mode:

- Position Tracking: Variables maintain the current position and direction of the servo

- Boundary Detection: Direction is reversed when the servo reaches its minimum (0°) or maximum
(180°) position

- Speed Control: Movement speed is controlled by both the step size and update interval

5. Alarm System
When an object is detected, a multi-component alarm activates:

- Visual Alarm: Red LEDs flash at regular intervals
- Auditory Alarm: A high-frequency (approximately 500Hz) tone is generated on the buzzer
- Information Display: The LCD shows the exact distance of the detected object

Implemented Functions

- Setup Function: configures all hardware components and initializes the timer interrupts

- Interrupt Service Routine: handles the periodic sensor reading based on Timer2 interrupts

- Main Loop Function: implements the core logic of the system based on the object detection state
- Timekeeping System: multiple timing variables track when different components need updates

Project Innovation

The novelty of this project lies in the integration of interrupt-driven sensor processing with real-time
multi-component coordination. Unlike basic proximity detection systems, this project combines
continuous servo scanning with non-blocking alarm systems, creating a dynamic radar-like
surveillance system. The use of Timer2 interrupts for sensor reading while maintaining smooth servo
operation and responsive LCD updates represents a different approach to embedded system design.

Project Architecture and Validation

The system follows a modular architecture where the ISR handles time-critical sensor operations while
the main loop manages user interface components. Validation was performed through systematic
testing:

- Distance accuracy: Tested with objects at known distances (5cm, 10cm, 15cm, 20cm) showing
+0.5cm precision

- Response time: Verified 1-second detection latency meets system requirements

- Scanning consistency: Confirmed smooth 180° servo sweep without stuttering

- Component coordination: Verified simultaneous operation of LEDs, buzzer, LCD, and servo without
interference

Sensor Calibration Process
The HC-SR04 ultrasonic sensor calibration involved:

- Distance Formula Validation: Verified the 0.034 cm/us speed of sound constant through
measurements against known distances

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/06 15:36

2025/06/06 15:36 5/6 Radar Guard

- Threshold Optimization: Through testing various objects and distances, established 15cm as optimal
detection threshold balancing sensitivity and false positives

Performance Optimizations

- LCD Update Optimization: Implemented 250ms update intervals to eliminate flickering while
maintaining responsiveness

- ISR Efficiency: Minimized ISR execution time by moving complex operations to main loop using
flag-based communication

- Timer Configuration: Selected Timer2 to avoid conflicts with Servo library's Timerl usage

The demonstration video showcases (the video is in the archive)

- Initial startup with “Safe area” display and green LEDs

- Continuous servo scanning motion (0-180°)

- Object detection triggering red LED flashing and buzzer alarm
- LCD displaying exact distance measurements

- Return to safe mode when object is removed

Results Obtained

The project yielded a fully operational proximity detection system that successfully integrates the
core concepts learned in laboratory sessions (I2C communication, timers, interrupts, and buzzer
control) while incorporating additional components like the ultrasonic sensor and servomotor. The
implemented system accurately detects objects within 15cm range, provides clear visual feedback
through an LCD display and LED indicators, generates audible alerts via the buzzer when objects are
detected, and maintains a continuous scanning motion with the servomotor during safe conditions.
Testing confirmed reliable performance with consistent object detection, accurate distance
measurements, responsive alarm activation, and stable operation across extended usage periods.

Conclusion

My proximity detection system successfully demonstrates the application of multiple technologies
learned throughout laboratory sessions. | effectively implemented 12C communication for the LCD
display, configured hardware timers and interrupts for sensor readings, and utilized a buzzer for audio
alerts. Building upon this foundation, | successfully integrated new components not covered in labs:
an ultrasonic distance sensor for proximity detection and a servomotor for continuous scanning
motion.

Download

radar_guard.zip

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

http://ocw.cs.pub.ro/courses/_media/pm/prj2025/vradulescu/radar_guard.zip

Iizf,;(l;pdate: 2025/05/23 pm:prj2025:vradulescu:alexandra.ionita03 http://ocw.cs.pub.ro/courses/pm/prj2025/vradulescu/alexandra.ionita03

Journal

- [v]15/05/2025 - Hardware Design
- [v]20/05/2025 - Software Design

Bibliography/Resources

Software Resources

- Arduino IDE - “Arduino Software (IDE)" - https://www.arduino.cc/en/software

- LiquidCrystal_I2C Library - https://github.com/fdebrabander/Arduino-LiquidCrystal-12C-library
- Arduino Timer Interrupts -

https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
- AVR Libc Reference Manual - https://www.nongnu.org/avr-libc/user-manual/
- PM laboratories

Hardware Resources

- Arduino UNO - https://docs.arduino.cc/hardware/uno-rev3/
- HC-SR04 Ultrasonic Sensor Datasheet -

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
- LCD 1602 12C Display - https://www.vishay.com/docs/37299/37299.pdf

Export to PDF

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link: [x]
http://ocw.cs.pub.ro/courses/pm/prj2025/vradulescu/alexandra.ionita03

Last update: 2025/05/23 14:50

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/06 15:36

https://www.arduino.cc/en/software
https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.nongnu.org/avr-libc/user-manual/
https://docs.arduino.cc/hardware/uno-rev3/
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://www.vishay.com/docs/37299/37299.pdf
http://ocw.cs.pub.ro/?do=export_pdf
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2025/vradulescu/alexandra.ionita03

	Radar Guard
	Introduction
	General Description
	Hardware Design
	Software Design
	Results Obtained
	Conclusion
	Download
	Journal
	Bibliography/Resources

