
2025/08/06 02:38 1/12 Smart Clock on the AVR Platform

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Smart Clock on the AVR Platform

Student: Ilie Lucian-Alexandru

Grupa: 331CB

Introduction

The smart clock described in this project is a stand-alone device built around an AVR
micro-controller (an Arduino-compatible UNO board). It continuously shows the time and date on a
0.96″ OLED display; it beeps briefly at every full hour; after 19:00 it gradually lights two LEDs acting
as the hour- and minute-hands; and it adapts LED brightness to the room light level using an LDR
sensor. The purpose of the project is to demonstrate features taken from at least three PM
laboratories—Timers & ISR (Lab 2), PWM (Lab 3) and the I²C bus (Lab 6)—inside a useful,
easy-to-demonstrate gadget. It also gives hands-on experience with an I²C OLED/LCD, a DS3231 RTC
module and simple peripherals (LED, buzzer, LDR). The idea came from the fact that most low-cost
electronic clocks drift by several minutes per month and have fixed brightness. By integrating a
precision RTC and PWM/ADC control logic we eliminate these drawbacks. The clock is useful at home
as a real gadget, can be easily extended (multiple alarms, temperature display, Bluetooth connection)
and helps consolidate embedded-systems skills.

General Description

Smart-clock implementation on the AVR platform

The project is organized around an Arduino UNO R3, which acts as the brain of the system and links
all modules. On the I²C bus two devices are connected: a DS3231 real-time clock, from which the
micro-controller reads highly accurate time and date, and a 0.96″ OLED display where this
information is shown permanently. Two 5 mm LEDs, driven by PWM outputs, work as the clock “hands”
and light up gradually after 19:00, indicating the passage of time without being intrusive during
daytime. One more LED, a RGB one, is used with D9/D10/D11 pins with PWM for breathing effect and
colour cycling. A passive buzzer, connected to a third PWM channel, emits a short beep at every full
hour; the 1 kHz tone is generated by a hardware timer that starts and stops automatically. The
ambient-light level is taken from a photo-resistor (LDR) on an analog pin; the ADC readings are used
to dim the LEDs when the room is well lit.

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/avaduva/schema_bloc_actualizata_ceas2.png?id=pm:prj2025:avaduva:lucian.ilie2807

Last update: 2025/05/27 10:10 pm:prj2025:avaduva:lucian.ilie2807 http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

http://ocw.cs.pub.ro/courses/ Printed on 2025/08/06 02:38

Hardware Design

List of materials for the smart clock:

Arduino UNO R3 development board (CH340 compatible)●

DS3231 RTC module + CR2032 battery●

0.96″ OLED display, I²C (SSD1306)●

MB102 breadboard, 830 tie-points●

Male-to-male jumper-wire set (≥ 65 leads)●

Passive buzzer, 5 V●

Red 5 mm LED – hour indicator●

Green 5 mm LED – minute indicator●

Common-cathode RGB LED, 5 mm (+ 3 × 220 Ω resistors)●

220 Ω resistors × 2 (for the LEDs)●

6 × 6 mm tactile button (SET)●

Photo-resistor (LDR) GL5528●

USB-A ↔ USB-B cable (programming & power)●

5 V / ≥ 1 A PSU (phone charger)●

Current hardware implementation status:

All modules are wired on the breadboard and have been tested both individually and together●

DS3231 RTC keeps accurate time (drift \< ± 1 s / day)●

SSD1306 OLED shows the current time + ambient-light level (“Light level:”) once per second●

LDR reacts correctly (0 – 1023) and is used to drive a PWM brightness control●

LEDs:●

Red – blinks at 1 Hz (handled by a Timer1 ISR)❍

Green – lights for 1 s whenever the minute changes❍

RGB – PWM “breathing” effect; switching colours on BTN press❍

Buzzer plays short beeps and a longer “gong” on each full hour●

All three push-buttons operate with `INPUT_PULLUP` and falling-edge detection●

Nr. Component Functional role in project Pin / Library

1 Arduino UNO R3 MCU + Timers/ISR + PWM + I²C
master —

2 RTC DS3231 (I²C) Keeps real-time clock, internal
temperature, alarm RTClib

3 0.96″ OLED SSD1306 (I²C) Displays time, lux and LED mode Adafruit_SSD1306

4 Photo-resistor (LDR) + 10 kΩ
divider

Measures ambient light
(auto-dimmer) A0

5 5 mm LED (red) Second indicator (Timer ISR) D5

6 5 mm LED (green) 1 s flash whenever the minute
changes (PWM-ready) D6

7 RGB LED PWM “breathing” effect; 7-colour
cycling via PWM

D9/D10/D11 (PWM) + 3
× 220 Ω resistors

8 Passive buzzer Beep feedback & hourly gong D3 (tone)
9 BTN HOUR Increment hour D2

2025/08/06 02:38 3/12 Smart Clock on the AVR Platform

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

10 BTN MIN Increment minute + beep D4
11 BTN MODE Toggle blue-LED mode D7
12 Breadboard + Dupont leads Rapid prototyping —

13 Resistors 220 Ω / 10 kΩ LED current limiters / LDR voltage
divider —

Pin mapping:

I²C bus (RTC + OLED) — pins SDA / SCL (dedicated I²C lines, on-board pull-ups)●

LDR (photo-resistor) — A0 · 10-bit ADC input●

Red LED — D5 · toggled by Timer1 ISR at 1 Hz (no PWM needed)●

Green LED — D6 · digital OUT / PWM-ready – flashes for one second each minute change●

RGB LED — D9/D10/D11 · hardware PWM used for smooth *breathing* effect and colours cycling●

Buzzer — D3 · `tone()` uses Timer2 for precise frequency generation●

BTN HOUR — D2 · INT0-capable input (configured with `INPUT_PULLUP`)●

BTN MIN — D4 · digital input (`INPUT_PULLUP`)●

BTN MODE — D7 · digital input (`INPUT_PULLUP`)●

PWM-capable pins (D3 / D5 / D6 / D9 / D10 / D11) were selected so they don’t clash with the I²C●

bus (A4/A5) or the UART lines (D0/D1)

Electric scheme

The following diagram shows all components connected on the breadboard, including the RTC, OLED,
LDR, 3 LEDs (Red, Green, RGB), passive buzzer, and 3 buttons.

Connected components & functionalities

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/avaduva/electric-scheme_actualizat.png?id=pm:prj2025:avaduva:lucian.ilie2807

Last update: 2025/05/27 10:10 pm:prj2025:avaduva:lucian.ilie2807 http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

http://ocw.cs.pub.ro/courses/ Printed on 2025/08/06 02:38

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/avaduva/p1.jpg?id=pm:prj2025:avaduva:lucian.ilie2807

2025/08/06 02:38 5/12 Smart Clock on the AVR Platform

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

The following pictures show the physical assembly of all modules connected on a breadboard:

OLED SSD1306 displays the following information, updated every second:●

Current time in format `HH:MM:SS`❍

Ambient light level (lux value from LDR sensor)❍

Current RGB LED mode (`colorIdx`) + OFF status if index is 0❍

Dim mode status: “Dim mode: ON” or “Dim mode: OFF”❍

RTC DS3231 is used to keep accurate time with ±1s/day drift●

LDR sensor is placed on the breadboard and provides real-time ambient light readings (0–1023)●

Used to activate automatic dimming if value is below 400❍

Push-buttons (HOUR, MINUTE, MODE) are connected to D2, D4, D7 respectively●

Used for adjusting the hour/minute and switching LED modes❍

Red and Green LEDs are individually wired and behave as follows:●

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/avaduva/p2.jpg?id=pm:prj2025:avaduva:lucian.ilie2807

Last update: 2025/05/27 10:10 pm:prj2025:avaduva:lucian.ilie2807 http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

http://ocw.cs.pub.ro/courses/ Printed on 2025/08/06 02:38

Red LED:❍

Blinks at 1 Hz before 19:00 using `millis()` logic■

After 19:00, represents hour value via PWM intensity■

Green LED:❍

Briefly flashes when the minute changes before 19:00■

After 19:00, represents minute value via PWM intensity■

Additional functionality (RGB LED + BTN MODE):●

RGB LED (common cathode) connected to pins D9 / D10 / D11❍

Displays one of 7 fixed colours based on `colorIdx` value■

Colour order: Red → Green → Blue → Cyan → Magenta → Yellow → White■

Automatically dims in dark environments (detected via LDR)■

While holding BTN MODE, RGB blinks white at 4 Hz as visual feedback■

BTN MODE (D7, INPUT_PULLUP)●

Short press: advances to the next colour (circular logic using `colorIdx`)❍

Long press: enables fast white blinking for visual feedback❍

Every action also triggers a short beep (3 kHz, 50 ms) from the buzzer❍

Passive Buzzer (D3)●

Emits short beeps on button presses❍

Plays a long “gong” at every full hour❍

1 Hz ticking sound every second (disabled between 19:00–23:59)❍

Software Design

Development environment: Arduino IDE 2.3.7

Libraries:

Wire.h – establishes I²C communication with the RTC and OLED display●

RTClib.h – used to read and write time from the DS3231 real-time clock module●

Adafruit_GFX.h – provides core graphics functions (fonts, shapes, text positioning) for the OLED●

Adafruit_SSD1306.h – handles display control over I²C for the 128×64 OLED screen●

Core functionalities implemented and tested:

Time tracking with RTC DS3231, updated every second●

OLED display shows time, ambient light (LDR), RGB LED mode and dimMode status●

Dim mode activates automatically when LDR reads below threshold (value < 400), reducing RGB●

LED brightness
LED behavior is time-aware:●

Before 19:00: Red LED blinks at 1 Hz; Green LED flashes on minute change❍

After 19:00: Red/Green LEDs act as clock hands (PWM based on hour/minute)❍

RGB LED cycles through 7 preset colours using PWM; its brightness adjusts dynamically based on●

ambient light level measured by the LDR (auto-dim at night)

2025/08/06 02:38 7/12 Smart Clock on the AVR Platform

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Buzzer generates:●

Short beep on button press (except 19–23 when silent)❍

Longer “gong” at the top of each hour❍

1 Hz ticking sound (disabled 19–23)❍

All buttons use INPUT_PULLUP and falling-edge detection to avoid bounce●

Functions implemented

void setup() – initializes I/O pins, OLED display, RTC module, and serial communication●

void loop() – non-blocking main loop, checks buttons, updates LEDs and OLED, processes tick●

events
void setRGB(uint8_t r, uint8_t g, uint8_t b) – sets the RGB LED to a specific color using PWM●

void beep(uint16_t freq, uint16_t dur) – plays a tone on the buzzer unless time is between●

19:00 and 23:59
uint8_t hourToPWM(uint8_t h) – maps hour (0–23) to a PWM value (0–255) for clock-hand LED●

behavior
uint8_t minuteToPWM(uint8_t m) – maps minute (0–59) to PWM value for clock-hand LED●

behavior

Program logic

The program uses `millis()` to generate a 1-second tick without blocking the main loop●

At each tick:●

Reads current time from RTC1.
Updates system LEDs (red/green) depending on time of day2.
Triggers buzzer if needed (heartbeat, hourly gong, button press)3.
Refreshes the OLED with current time, light level, color index, and dim mode status4.

RGB LED:●

Changes color with each MODE button press1.
Blinks white rapidly while MODE is held down (hold-feedback)2.
Dims automatically in low light (based on LDR reading)3.

LDR:●

Continuously read via `analogRead()`1.
Triggers dim mode below threshold (`ldrThreshold = 400`)2.

Buttons:●

BTN_H: increments hour on press1.
BTN_M: increments minute + beeps2.
BTN_MODE: cycles through color presets3.

How it works

When powered on, the system initializes all components and retrieves the current time from the●

DS3231 RTC
The red LED blinks every second as a heartbeat until 19:00●

After 19:00, the red LED brightness reflects the current hour (PWM), while the green LED reflects the●

current minute
The green LED flashes once every new minute before 19:00●

The RGB LED can be set to one of 7 preset colors; it dims automatically at night based on ambient●

light
Holding the MODE button causes the RGB LED to blink white rapidly as visual feedback●

Last update: 2025/05/27 10:10 pm:prj2025:avaduva:lucian.ilie2807 http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

http://ocw.cs.pub.ro/courses/ Printed on 2025/08/06 02:38

The buzzer emits a short beep on button press and a longer “gong” at each full hour, except during●

the silent hours (19:00–23:59)
The OLED displays the current time (HH:MM:SS), ambient light level, RGB mode, and whether dim●

mode is ON/OFF

New features introduced (vs. template)

Time-dependent LED behavior:●

Classic blinking/flashing before 19:00❍

LED “hands” with proportional PWM after 19:00❍

Auto-dimming feature using LDR sensor and PWM reduction●

Dynamic buzzer behavior (silent hours implemented in software)●

Multi-mode RGB LED, including a white flashing effect on long-press●

OLED updates every second: Time, light level, current RGB mode, dim status●

Features implemented from labs

Lab 3 – PWM, LED breathing & analogRead

PWM control for RGB LEDs and system LEDs (red/green after 19:00)●

Smooth “breathing” animation effect using PWM on RGB LED●

Light detection using `analogRead()` from an LDR sensor●

Threshold-based logic (`ldrThreshold = 400`) for enabling automatic “dim mode” at night●

Lab 4 – millis(), timer-based updates & OLED/RTC integration

Use of `millis()` for implementing non-blocking 1-second ticks●

Red LED blinking at 1 Hz without using `delay()`●

Real-time clock support via DS3231 and `RTClib`●

Time display updated every second on OLED using `Adafruit_SSD1306`●

Lab 5 – tone() and auditory feedback

Use of `tone()` to play short sounds on button interaction●

Hourly chime (“gong”) at full hour events●

Conditional muting logic: buzzer is disabled between 19:00–23:59 to avoid disturbance●

Lab 6 – I²C bus, debouncing, edge detection, and button logic

Communication with both RTC DS3231 and OLED SSD1306 via the I²C bus (`Wire.h`)●

All buttons are configured with `INPUT_PULLUP`●

Falling-edge detection using previous state comparison●

Three buttons implemented with distinct actions (hour, minute, mode switching)●

Every interaction triggers a visual and/or auditory feedback●

Testing & calibration

LDR threshold value (`ldrThreshold = 400`) chosen after testing under normal room lighting●

2025/08/06 02:38 9/12 Smart Clock on the AVR Platform

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

RGB LED tested with dimming and full brightness in varying light conditions●

Buttons debounced and tested for both short press and hold●

Verified correct PWM values for hour (0–23) and minute (0–59) mapping●

Buzzer output silenced reliably in “quiet hours” 19:00–23:59●

Software optimizations

No `delay()` usage – entire loop is non-blocking using `millis()`●

Only updates OLED once per second to avoid flicker●

PWM outputs adjusted only when needed●

All state variables and timing use unsigned types (overflow-safe)●

`tick` flag separates logic from timing checks●

Video explanation

Demo includes:●

Full operation cycle (LED behavior before and after 19:00)❍

RGB LED mode change & white blink effect❍

LDR dimming effect with covered/uncovered sensor❍

Time update via buttons (HOUR, MINUTE)❍

Buzzer feedback with conditional silence❍

OLED display showing all real-time parameters❍

Rezultate Obţinute

The results after completing all the project:

https://streamable.com/nzzcwh

This video presents the base functionalities of the smart clock: * The OLED screen displays real-time
data: current time, ambient light level (lux), and the active RGB color index. * The RGB LED changes
color with each short press of BTN MODE, cycling through 7 predefined colors. * Holding BTN MODE
triggers a visual feedback mode where the RGB LED blinks white at 4 Hz. * The Dim mode (based on
LDR readings) reduces LED brightness in low light conditions. * The hour and minute buttons allow
manual time adjustments.

https://streamable.com/ryv6rw

This clip shows the additional functionality activated after 19:00: * The red LED (D5) no longer blinks
but gradually brightens depending on the current hour. * The green LED (D6) lights up with intensity
proportional to the current minute. This simulates a simple hour-and-minute hand system using LED
brightness. After 00:00, both LEDs return to their standard behavior (blinking and minute-flash).

https://streamable.com/nzzcwh
https://streamable.com/ryv6rw

Last update: 2025/05/27 10:10 pm:prj2025:avaduva:lucian.ilie2807 http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

http://ocw.cs.pub.ro/courses/ Printed on 2025/08/06 02:38

Additionally, the RGB LED adapts to ambient light using the LDR sensor. When you shine light onto
the photoresistor, the RGB LED's brightness increases accordingly. In darker environments, the RGB
LED automatically dims (enters dim mode) for smoother visual integration during nighttime. </note>

Conclusions

The development of this project provided valuable experience across both hardware and software
domains, offering a practical understanding of embedded systems and real-time interaction.

Skills and competencies acquired:

Embedded programming and software logic:●

Implemented real-time clock tracking, dynamic LED behavior, PWM dimming, and non-blocking❍

execution using `millis()`
Improved understanding of writing efficient, responsive code for microcontrollers❍

Sensor integration and environmental feedback:●

Used an LDR sensor to adjust LED brightness based on ambient light❍

Gained insight into environmental sensing and intelligent system response❍

User interaction and input handling:●

Handled multiple button inputs (hour, minute, mode)❍

Applied debounce and edge-detection techniques for stable input detection❍

Visual output and real-time status display:●

Utilized the OLED to show real-time time, light level, RGB mode, and dim status❍

Strengthened knowledge of I²C communication and display control❍

Audio feedback and conditional logic:●

Implemented buzzer feedback that adapts to time of day (silent hours)❍

Applied `tone()` and timers to manage auditory signals❍

Problem-solving and debugging:●

Overcame challenges in timer synchronization, display refresh, and RGB transitions❍

Improved analytical thinking and troubleshooting in embedded contexts❍

Practical benefits and applications:

Time-aware visual indicators:●

Offers LED behavior that changes based on time, useful for ambient clocks or alerts❍

Custom interaction patterns:●

Button logic and color modes are adaptable to other user-controlled systems❍

Expandability and real-world relevance:●

Modular design supports easy addition of sensors and extensions❍

Strong foundation for IoT, automation, or smart home projects❍

In conclusion, this project served as a comprehensive introduction to embedded system
design—combining real-time programming, sensor integration, display systems, and human
interaction into a cohesive and practical implementation.

2025/08/06 02:38 11/12 Smart Clock on the AVR Platform

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Download

Link for the code: https://github.com/Ilie28/Proiect-PM

Journal

06.05.2025 – decided on the project, wrote the description and the hardware materials
11.05.2025 – materials bought, starting on the hardware design
13.05.2025 – tested RTC, OLED, LDR, buzzer and buttons independently
15.05.2025 – implemented LED functionality (blinking, PWM, mode switching)
16.05.2025 – finished integration: all modules tested together
17.05.2025 – added RGB LED support and 7-color switching logic
18.05.2025 – finalized code, added edge detection, PWM breathing, and buzzer feedback
19.05.2025 – created and uploaded schematic + wiring diagram
20.05.2025 – documented project structure and updated project page
22.05.2025 – finalized software logic and display integration; completed all wiki documentation

Bibliography/Resources

Hardware Resources

Components:●

https://shorturl.at/wJVZz❍

https://shorturl.at/tPXaz❍

https://shorturl.at/vd9zp❍

https://shorturl.at/7pFHC❍

https://tinyurl.com/bdhm9uck❍

https://tinyurl.com/2b9mh7cf❍

https://tinyurl.com/j2tesvn9❍

https://tinyurl.com/47mrsvj7❍

Datasheets:●

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-AT❍

mega328P_Datasheet.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf❍

https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf❍

https://docs.arduino.cc/hardware/uno-rev3❍

Software Resources:

https://learn.adafruit.com/adafruit-oled-display-library●

https://learn.adafruit.com/adafruit-gfx-graphics-library●

https://github.com/adafruit/RTClib●

https://github.com/Ilie28/Proiect-PM
https://shorturl.at/wJVZz
https://shorturl.at/tPXaz
https://shorturl.at/vd9zp
https://shorturl.at/7pFHC
https://tinyurl.com/bdhm9uck
https://tinyurl.com/2b9mh7cf
https://tinyurl.com/j2tesvn9
https://tinyurl.com/47mrsvj7
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://docs.arduino.cc/hardware/uno-rev3
https://learn.adafruit.com/adafruit-oled-display-library
https://learn.adafruit.com/adafruit-gfx-graphics-library
https://github.com/adafruit/RTClib

Last update: 2025/05/27 10:10 pm:prj2025:avaduva:lucian.ilie2807 http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

http://ocw.cs.pub.ro/courses/ Printed on 2025/08/06 02:38

https://www.arduino.cc/reference/en/●

https://platformio.org/lib/show/80/Adafruit%20GFX%20Library●

https://platformio.org/lib/show/562/Adafruit%20SSD1306●

Export to PDF

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link:
http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

Last update: 2025/05/27 10:10

https://www.arduino.cc/reference/en/
https://platformio.org/lib/show/80/Adafruit GFX Library
https://platformio.org/lib/show/562/Adafruit SSD1306
http://ocw.cs.pub.ro/?do=export_pdf
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2025/avaduva/lucian.ilie2807

	Smart Clock on the AVR Platform
	Introduction
	General Description
	Hardware Design
	Software Design
	Rezultate Obţinute
	Conclusions
	Download
	Journal
	Bibliography/Resources

