2025/10/16 22:46 1/6 Fire Alarm

Fire Alarm
Author: Cosmin-Razvan Vancea (SAS1)

Introduction

- The purpose of this project is to create a smart FireAlarm. Upon fire detection, the device will collect
environmental data from the sensors and send it to a remote server, which in turn will notify all the
users about the incident.

- The FireAlarm also comes with an easy-to-use configuration app, which is required to connect the
FireAlarm device to a local Wi-Fi network.

- Such a project could prove itself to be extremely helpful. In extreme cases, a fire alarm could be a
decisive factor for saving lives and goods.

Overview

(]

- Upon initialization, the microcontroller reads the configuration data from its internal flash:
1. SSID and password of the Wi-Fi network;

2. URL of a remote server where the measurements must be sent to:

3. GUID that uniquely identifies the FireAlarm device (this ID is sent along with each
measurement).
- The RGB led provides feedback to the user:
= green: the device was able to validate the configuration data and connect to the remote server;
= red: there is valid configuration data stored inside the flash memory, but it could not be used to
connect to the server (network issue);
= blue: the device is in configuration mode (happens on the initial startup).
- The microcontroller monitors the pins of the sensors;
- If any sensor reads data that could indicate a fire, the ESP32 would query all the sensors and send
the data to the remote server. Also, it turns on the buzzer alarm;
- The remote server relays the fire signal to each user device that is registered for notifications
(smartphone, laptop etc).

Initial Setup/Configuration Mode

(x]

If the flash memory is empty or the user holds down the SETUP button while FireAlarm is starting up,
then the device will switch to the configuration mode:

- Wi-Fi starts in AP+STA mode, meaning that it would act as a hotspot;

- a special WebServer is started. It listens to requests made to 192.168.4.1 (the IP of the FireAlarm
on the local hotspot network);

- the WebServer exposes a handful of REST APl endpoints used to query and alter the configuration;

- once a client connects to the Wi-Fi hotspot and pushes a configuration, the FireAlarm would store it
in the internal flash and restart itself to the normal operation mode.

REST APIs implemented on the microcontroller:

- GET /api/vl/access-points: returns a the list of Wi-Fi Access Points accessible to the
FireAlarm device;

- GET /api/vl/settings: returns the current configuration of the FireAlarm device;

- POST /api/vl/settings: pushes a new configuration to the FireAlarm device;

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

mailto:csvancea@gmail.com
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-schema-logica.png?id=iothings:proiecte:2022sric:fire-alarm
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-schema-logica-configurare.png?id=iothings:proiecte:2022sric:fire-alarm

Last update: 2023/06/01 16:04 iothings:proiecte:2022sric:fire-alarm http://ocw.cs.pub.ro/courses/iothings/proiecte/2022sric/fire-alarm

- POST /api/vl1l/switch-mode: forces the device to switch to the normal mode;
- POST /api/v1/ping: echoes back the request. Useful to determine whether we are connected to
a FireAlarm device.

Hardware Design
Components

WeMos LOLIN32

MQ-2 Gas Sensor Module
IR Flame Sensor

Active Buzzer Module

RGB LED Common Cathode
Resistors (3x 2.2k)
Capacitors (1x 47uF)
Breadboard

Nk WN

Electronic Schematics

V¥
us6

IIITIi
[TT1
E

=
¥

DET

Tl

Software Design
General Information

The project is comprised of three main software components:

1. ESP32 Software: communicates with the sensors and sends the measurements to the remote
server;

2. Remote Server: processes and stores the measurements; notifies the registered devices; provides
a web interface for visualizing the data;

3. Android Companion App: consumes the configuration APl and provides a human interface for
setting up the FireAlarm device; can also be used to visualize the data sent to the remote server.

We will only focus on the microcontroller software.
ESP32 Software
The code is split into multiple “modules”:

- SettingsManager: manages the configuration data

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/16 22:46

https://cleste.ro/placa-dezvoltare-esp-wroom-32-esp-32s.html
https://www.optimusdigital.ro/en/gas-sensors/107-mq-2-gas-sensor-module.html
https://www.optimusdigital.ro/en/optical-sensors/110-ir-flame-sensor.html
https://www.optimusdigital.ro/en/buzzers/10-active-buzzer-module.html
https://www.optimusdigital.ro/en/leds/483-rgb-led-common-cathode.html
https://www.optimusdigital.ro/en/kits/4745-optimus-digital-resistor-assortment-kit-10-to-1m-600pcs-0616639927610.html
https://www.optimusdigital.ro/en/capacitors/1880-electrolytic-condenser-from-10-uf-to-63-v.html
https://www.optimusdigital.ro/en/breadboards/8-breadboard-hq-830-points.html
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-schema-electrica.png?id=iothings:proiecte:2022sric:fire-alarm
https://github.com/csvancea/fire-alarm/tree/master/fire-alarm
https://github.com/csvancea/fire-alarm/tree/master/howl
https://github.com/csvancea/howl-android

2025/10/16 22:46 3/6 Fire Alarm

> provides a mechanism for serializing and unserializing the data;
- provides an interface for reading and writing the configuration from/to the flash storage.
- NetManager: manages the Wi-Fi operation mode (station or client). Branches down further in two
modules:
- NetClient: the FireAlarm device acts as a client
= provides a mechanism for connecting to a remote web server through HTTPs;
« can only POST data (measurements).
- NetConfigAP: the FireAlarm device acts as a station (“Hotspot”)
- implements a WebServer;
» the WebServer handles a series of REST API endpoints (explained above);
« can temporarily switch the Wi-Fi module to station mode in order to scan for other APs.
- (Flame|Gas)Sensor: abstraction layer for the sensors
= can register an interrupt on a pin;
- invokes a callback each time an interruption is raised (the value on the pin changed);
- provides a mechanism for reading the sensor.
- Led: abstraction layer for a 4-pin RGB led
- provides a way to change the color, intensity, blinking rate etc
- Buzzer: abstraction layer
- FireAlarm: puts together the components above; responsible for the general logic of the program.

3rd-party Libraries
Moreover, the following 3rd-party libraries are used:

- Arduinojson: JSON serializer/deserializer. Used for communicating through REST APIs and storing the
configuration as a text file.

- EasyButton: abstraction layer for push buttons. Provides a debouncing mechanism and invokes a
user-defined callback on button press.

Interrupts

During a network operation, the device might appear unresponsive due to the main loop() being
busy processing the network request. In order to increase the responsiveness of the FireAlarm device,
interrupts are being used: each time a sensor value changes, an interrupt is raised. The interrupt
handler marks the event for further processing in the main loop and changes the state of the buzzer
(on/off) so that the alarm appears to be responsive to the nearby people.

Server
The server software is written in Flask. It is basically a web server that:

- exposes an REST API endpoint for the ESP32 to post measurements to. Note that each POST request
must contain the GUID of the FireAlarm, otherwise the server would not be able to tell different
devices apart;

- provides a web interface for reading the measurement. The user must know the FireAlarm GUID.

The alarm notification is served though PushBullet. For the notification mechanism to actually work,
the user must associate a PushBullet token to their FireAlarm GUID. This operation can be done
though the web interface.

Android Companion App

Written in Java. It is basically a client that consumes both the API provided by the ESP32 (when in

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

https://arduinojson.org/
https://reference.arduino.cc/reference/en/libraries/easybutton/
https://flask.palletsprojects.com/en/1.1.x/
https://pushbullet.com/

Last update: 2023/06/01 16:04 iothings:proiecte:2022sric:fire-alarm http://ocw.cs.pub.ro/courses/iothings/proiecte/2022sric/fire-alarm

configuration mode) and the API provided by the remote web server.

The app provides a step-by-step tutorial on how to configure the FireAlarm. After the configuration is
done, the app stores locally the assigned GUID of the FireAlarm device so that the users are not

needed to remember the GUID themselves.

Results
FireAlarm Prototype

Web Interface

Id Pushbullet

O A9

Fire Alarm
Smoke and Flames detected! Smoke level: 1000/1023

AE]

Measurements for Fire Alarm: 744A2B95-D130-
40A1-94E3-D8719FEDCCCD

Enter a Pushbullet access token:

0.gorHH+

Update token ~ Remove token

No Smoke Level Smoke Detected Flame Detected Measurement Time

E 459 1000 Yes Yes 2021-05-24 20:56:09

Android Companion App

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/16 22:46

http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-photo.jpg?id=iothings:proiecte:2022sric:fire-alarm
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-photo-2.jpg?id=iothings:proiecte:2022sric:fire-alarm
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-web-interface.png?id=iothings:proiecte:2022sric:fire-alarm
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-phone-notification.png?id=iothings:proiecte:2022sric:fire-alarm

2025/10/16 22:46 5/6 Fire Alarm

il all & G g all ol = @&

=
atll il B G

ID Gas Flame Date
WiFi
#20 | 2645 oK Thu May 25 21:46:07 GMT+03:00 2(
SSID
dot1x #19 | 453 oK Thu May 25 21:45:10 GMT+03:00 2(
#18 | 1280 oK Mon May 22 15:07:33 GMT+03:00 2!
Password
#17 | 1119 oK Mon May 22 15:04:53 GMT+03:00 2!
Remote Server
You have not Conﬂgured your #16 | 1124 oK Mon May 22 15:03:53 GMT+03:00 2!
FireAlarm device yet. Measurement AP| endpoint 415 | 1136 ok Mon May 22 15:02:53 GMT+03:00 2

https://howl.csvancea.xyz/api/v1/measurement
/add
#14 | 3520 Detected () Mon May 22 15:01:53 GMT+03:00 2!

Sensor unique ID (press to regenerate) #13 | 1391 Detected () Mon May 22 15:01:22 GMT+03:00 2!
1b0eb392-a3e3-4d87-8d3d-6e3ac022cc7b

#12 1423 Detected () Mon May 22 15:01:11 GMT+03:00 2!

Root certificate of the API server

#11 | 1518 oK Mon May 22 15:00:44 GMT+03:00 2!
#10 | 2800 oK Sun May 21 23:58:52 GMT+03:00 2(
#9 | 2721 oK Sun May 21 23:57:52 GMT+03:00 2(
#8 | 2707 0K Sun May 21 23:57:07 GMT+03:00 2(
#7 | 2672 oK Sun May 21 23:56:07 GMT+03:00 2(
#6 | 2699 oK Sun May 21 23:55:24 GMT+03:00 2(
#5 | 2697 oK Sun May 21 23:54:24 GMT+03:00 2(
#4 | 2670 oK Sun May 21 23:53:25 GMT+03:00 2(

Videos

Conclusion

It was a challenging and productive experience because | had to approach the project from three
different perspectives: a local system that collects data from sensors; a remote system that receives
and processes measurements from multiple devices; and a hybrid system that must communicate to
both the local system (through a local network/“Hotspot”) and to the remote system (through the
Internet).

Download

- Source code (GitHub)
- Source code - Android companion app (GitHub)

Resources

- ESP32 Arduino Core’s documentation

Arduino ESP-32 Wi-Fi API

- Arduino ESP-32 WebServer library source code
Arduino)son

EasyButton

- Flask Documentation

PushBullet API Documentation

Android API reference

- TableView for Android

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-android-startup.jpg?id=iothings:proiecte:2022sric:fire-alarm
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-android-config.jpg?id=iothings:proiecte:2022sric:fire-alarm
http://ocw.cs.pub.ro/courses/_detail/iothings/proiecte/2022sric/fire-alarm-android-interface.jpg?id=iothings:proiecte:2022sric:fire-alarm
https://github.com/csvancea/fire-alarm/
https://github.com/csvancea/howl-android/
https://docs.espressif.com/projects/arduino-esp32/en/latest/
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/wifi.html
https://github.com/espressif/arduino-esp32/tree/master/libraries/WebServer/src
https://arduinojson.org/
https://reference.arduino.cc/reference/en/libraries/easybutton/
https://flask.palletsprojects.com/_/downloads/en/1.1.x/pdf/
https://docs.pushbullet.com/
https://developer.android.com/reference
https://github.com/evrencoskun/TableView

Last update: 2023/06/01 16:04 iothings:proiecte:2022sric:fire-alarm http://ocw.cs.pub.ro/courses/iothings/proiecte/2022sric/fire-alarm

Export to PDF

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link: [x]
http://ocw.cs.pub.ro/courses/iothings/proiecte/2022sric/fire-alarm

Last update: 2023/06/01 16:04

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/16 22:46

http://ocw.cs.pub.ro/?do=export_pdf
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/iothings/proiecte/2022sric/fire-alarm

	Fire Alarm
	Introduction
	Overview
	Initial Setup/Configuration Mode
	Hardware Design
	Components
	Electronic Schematics
	Software Design
	General Information
	ESP32 Software
	3rd-party Libraries
	Interrupts
	Server
	Android Companion App
	Results
	FireAlarm Prototype
	Web Interface
	Android Companion App
	Videos
	Conclusion
	Download
	Resources

