
Coding Style

“Any fool can write code that a
computer can understand. Good
programmers write code that humans
can understand.” – Martin Fowler

nAnti-Patterns:
l “Style doesn’t matter;

it passes all the tests”
l Code that is clever

instead of clear

nOther people must understand your code
l Peer reviews won’t work if nobody can read your code

– Write code so that others can tell it is obviously correct
l If others can’t understand it, they will injectbugs
l If it’s not obviously correct, then it’s wrong.

Coding Style: Understandability
“There are two ways of constructing a software
design: one way is to make it so simple that
there are obviously no deficiencies and the
other way is to make it so complicated that
there are no obvious deficiencies.”

— C.A.R. (Tony) Hoare, 1980 Turing Award Talk

http://blog.aerojockey.com/post/iocccsim

n Consistent formatting
l Consistent indentation, braces
l Templated headers for files and functions
l Spaces and “()” to avoid precedence confusion
l Use space instead of tab

n Comments
l Explain what & why, not just codeparaphrase
l Comments are not a design

n Naming
l Descriptive, consistent naming conventions

– E.g., variables are nouns; functions are verbs

n Avoid magic numbers (use const)
l Avoid macros (use inline)

Make Code Easy To Read
Obfuscated C

Winner:
Flight Simulator

http://blog.aerojockey.com/post/iocccsim

Modularity
Many smaller .c/.cpp files (one per class)
Externally visible declarations into .h file

Conditional Statements
Boolean conditional expression results; no assignments
All switch statements have a default (usually error trap)
Limited nesting (see also cyclomatic complexity)

Variables
Descriptive names that differ significantly
Smallest practicable scope for variables; initialize at point of definition
Use typedefs to define narrow types (also use uint32_t, use enum, etc.)
Range checks & bounds checks (e.g., buffer overflow)

Handle errors returned by called functions

Good Code Hygiene

"We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should
not pass up our opportunities in that critical 3%”
l Donald Knuth (December 1974). "Structured Programming

with go to Statements". ACM Journal Computing Surveys 6 (4): 268.

n Don’t optimize unless you have performance data
l Most code doesn’t matter for speed
l Use little or no assembly language. Get a better compiler.

n Optimization makes it hard to know your code is right
l Do you want correct code or tricky code?

– (Pick one. Which one is safer?)

l Buy a bigger CPU if you have to

Optimization

https://xkcd.com/1691/

n Pick a coding style and follow it
l Use tool support for language formatting
l Evaluate naming as part of peer review
l Comments are there to explain implementation

n The point of good style is to avoid bugs
l Make it hard for a reviewer to miss a problem

– Even better, make it easy for a tool to find problem

l Also need to have a good technical style

n Coding stylepitfalls:
l Optimizing for the author instead of the reviewer

Coding Understandability Best Practices
Great style depends
upon point of view.

l Making it too easy to deviate from style rules

7© 2020 Philip Koopman

“Always code as if
the guy who ends
up maintaining
your code will be a
violent psychopath
who knows where
you live.

Code for
readability.”

(Authorunclear)

https://goo.gl/pvDMHX CC BY-NC 2.0

https://xkcd.com/1513/

n Anti-Patterns:
l Code compiles withwarnings
l Warnings are turned off or over-ridden
l Insufficient warning level set
l Language safety features over-ridden

n Make sure the compiler understands what you meant
l A warning means the compiler might not do what you think

– Your particular language use might be“undefined”
l A warning might mean you’re doing something that’s likely a bug

– It might be valid C code, but should be avoided
l Don’t over-ride features designed for safe language use

Coding Style: Language Use

nDefined, but potentially dangerous
l if (a = b) { … }
l while (x > 0); {x = x-1;}

// a is modified
// infinite loop

nUndefined or unspecifiedè dangerous
l You might think you know what these do …

…but it varies from system to system
l int *p = NULL; x = *p; // null pointer dereference
l int b; c = b; // uninitialized variable
l int x[10]; … b = x[10]; // access past end of array
l x = (i++) + a[i]; // when is i incremented?

The C Language Doesn’t Always Play Nice

BAD
CODE!

n MISRA C,C++
l Guidelines for critical systems in C (e.g., no malloc)
l Portability, avoiding high risk features, best practices

n CERT Secure C, C++, Java
l Rules to reduce security risks (e.g., buffer overflows)
l Includes list of which tools check which rules

n Static analysis tools
l More than compiler warnings (e.g., strong type warnings)
l Many tools, both commercial and free. Start by going far past “–Wall” on gcc

n Dynamic Analysis tools
l Executes the program with checks (e.g., memory array bounds)
l Again, many tools. Start by looking at Valgrind tool suite

Language Use Guidelines & Tools

MISRA C
2012
Example

[MISRA C-2012 Guidelines; FairUse]

n Use enum instead of int
l enum color {black, white, red}; // avoids bad values

n Use const instead of #define
l const uint64_t x = 1; // helps with type checking

uint64_t y = x << 40; // avoids 32-bit overflow bug

n Use inline instead of #define
l If it’s too big to inline, the call overhead doesn’t matter
l Many compilers inline automatically even without keyword

n Use typedef with static analysis
l typedef uint32_t feet; typedef uint32_t meters;

feet x = 15;
meters y = x; // feet to meters assignment error

n Use stdint.h for portable types
l int32_t is 32-bit integer, uint16_t is 16-bit unsigned, etc.

Let the Language Help!

https://goo.gl/6SqG2i

n Use deviations from rules with care
l Use “pragma” deviations sparingly; comment what / why

n What about legacy code that generates
lots of warnings?
l Strategy 1: fix one module at a time

– Useful if you are refactoring/re-engineering the code
– Sometimes might need to keep warnings off for 3rd party headers

l Strategy 2: turn on one warning at a time
– Useful if you have to keep a large codebase more or less in synch

l Strategy 3: start over from scratch
– If the code is bad enough this is more efficient … if business conditions permit

Deviations & Legacy Code

n Desirable language capabilities:
l Type safety and strong typing (e.g., pointers aren’t ints)
l Memory safety (e.g., bounds on arrays)
l Robust static analysis (language & tool support)
l In general, no surprises

n SparkAda as a safety critical language
l Formally defined language; verifiable programs

– The language doesn’t have ambiguities or undefined behaviors
l You can prove that a program is correct

– E.g., can prove absence of: array index out of range, division by zero
– (In practice, this makes you clean up your code until proof succeeds)

l Key idea: design by contract
– Preconditions, post-conditions, side effects are defined

Or – You Can Use A Better Language!

Wikipedia
https://goo.gl/3w6RF6

Spark Ada is asubset
of the Ada

programming
language.

n Adopt a safe coding style (or a safe language)
l MISRA C & CERT C are good starting points
l Specify a static analysis tool and config settings

– To degree practical, let machines find the style problems
l When static analysis is set up, add dynamic analysis

n The point of good style is to avoid bugs
l Let the compiler find many bugs automatically
l Reduce chance ofcompiler mistaking your intention

n Coding style pitfalls:
l “The code passes tests, so warnings don’t matter”
l Real bugs lost in a huge mass of warnings
l Making it too easy to deviate from style rules

Language Style Best Practices

https://goo.gl/pvDMHX CC BY-NC2.0 https://goo.gl/pvDMHX CC BY-NC2.0

https://xkcd.com/1695/

nAnti-Patterns:
l No peer reviews
l Reviews too informal/too fast
l Reviews find <50% of all bugs

n Fresh eyes find defects
l Code and other document benefit

from a second (and third) set of eyes
l Peer reviews find more bugs/$ than testing

– And, they find them earlier when bugs are cheaper to fix
l Everything written down can benefit from a review

Peer Reviews

r

Most Effective Quality Practices
Ebert & Jones, “Embedded Software: Facts, Figures, and Future,” IEEE Computer, April 2009, pp. 42-52

Ranked by defect removal effectiveness in percent defects detectable at that stage that are removed.
“*” means exceptionally productive technique (more than 750+ function points/month)

l * 87% static code analysis (“lint” tools, compiler warnings)
l 85% design inspection
l 85% code inspection
l 82% Quality Function Deployment (requirements analysis)
l 80% test plan inspection
l 78% test script inspection
l * 77% document review (other documents)
l 75% pair programming (informal on-the-fly review)
l 70% bug repair inspection
l * 65% usability testing
l 50% subroutine testing (unit test)
l * 45% SQA (Software Quality Assurance) review
l * 40% acceptance testing

0 System
Rqmts

Software
Rqmts

Arch
Design

Det Design Code Unit Test Integ Test System
Test

Nu
m

be
r

Minor
Major

Defect Removal by Phase - Typical Project from 5 years earlier
300

250
200

150

100
50

0
System Software
Rqmts Rqmts

Arch
Design

Det Design Code Unit Test Integ Test System
Test

Nu
m
be
r

Minor
Major

Peer Reviews Are Effective + Efficient

[Source:
Roger G.,
Aug. 2005]

Almost no bugs left
in system test!

Most bugs found
in system test!No reviews, no unit test,

no integration test, …

Defect Removal by Phase With Peer Reviews
Found more bugs total

Found many bugs up front, where fixes are cheaper

5 years later…
300
250
200
150
100
50

n Methodical, in-person reviewmeetings
l Pre-meeting familiarity with project
l Producer explains item then leaves
l Moderator keeps things moving
l Reader (not author) summarizes as you go
l Reviewers go over every line, using checklists (perspective-based)
l Recorder takes written notes
l Result: written list of defects. The Producer fixes code off-line
l Re-inspection if the defect rate was too high

n Methodical reviews are the most cost effective
l Important to measure bug discovery rate to ensure review quality

Gold Standard: Fagan Style Inspections

Too fast and too slow are both bad.

n Inspect the item, not the author
l Don’t attack the author.

n Don’t get defensive
l Nobody writes perfect code. Get over it.

n Find but don’t fix problems
l Don’t try to fix them; just identify them.

n Limit meetings to two hours
l People are less productive after that point.

n Keep a reasonable pace
l About 150 lines of code (or equivalent) per hour.

n Avoid “religious” debates on style
l Enforce conformance to your style guide. No debates on whether style guide is correct.

n Inspect, early, often, and as formally as you can
l Keep records to document value (might take a while to mature).

Rules for Successful Peer Reviews

Example Light-Weight Review Report

Just enter
“fixed” if fixed
within
24 hours

issues found is the most
important item!

Free form text issue
description

Perspective-Based Peer Reviews
n Perspective-based Peer Reviews are 35%more effective

[https://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf]

n Mechanics of a Perspective-based review
l Divide a peer review checklist into three sections
l Assign each participant a different section of the checklist

– OK to notice other things, but primary responsibility is that section
– Multiple sets of eyes + perspective breadth

n Example perspectives for a review:
l Control flow issues
l Data handling issues
l Style issues

http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf

nCustomize
as needed

Peer Review Checklist Template

Before (Ineffective Reviews)

With Weekly Defect Reporting

Review More Than Just The Code
Requirements
Specification

Design
Integration

Design

Coding

Acceptance
Testing

Code

Requirements

Test Plan

Test Plan

Test Plan

Test Plan

Architecture & HLD

Design

Coding

Create
Requirements

Create System
Architecture

Create Detailed
Design

Integration
Testing

Subsystem
Testing

S/W Unit
TestingLEGEND:

Artifacts
To Peer
Review StaticAnalysis

Economics Of Peer Review
n Peer reviews provide more eyeballs to find bugs in an affordable way

l Good embedded coding rate is 1-2 lines of code/person-hr
– (Across entire project, including reqts, test, etc.)

l A person can review 50-100 times faster than they can write code
– If you have 4 people reviewing, that is still >10x faster than writing!

l How much does peer review cost?
– 4 people * 100-200 lines of code reviewed per hour
– E.g., 300 lines; 4 people; 2 hrs review+1 hr prep = 25 LOC/person-hr

l Reviews are only about 5%-10% of your project cost
n Good peer reviews find at least half the bugs!

l And they find them early, so total project cost can be reduced

n Why is it folks say they don’t have time to do peer reviews?

n Formal reviews (inspections) optimize bugs/$
l Target 10% of project effort to find 50% of bugs

– You can review 100x faster than write code; it’s cheap
l Review everything written down, not just code
l Use a perspective-based checklist to find more bugs

n Review pitfalls
l If your reviews find <50% of defects, they are BROKEN

– The 80/20 rule does NOT apply to review formality! Formal reviews are best.
– You can’t review at end; need to review throughout project

nReview tools
l On-line review tools are OK, but not a substitute for in-person meeting
l Static analysis tools are great – but not a review!

Peer Review Best Practices

https://www.xkcd.com/1833/

http://www.xkcd.com/1833/

n Philip Koopman - CMU

Disclaimer

This lecture contains materials from:

