

Cryptography

December 2, 2014

- Principles of security
- Encryption algorithms
- Key exchanges
- Hashing algorithms
- Authentication algorithms

Confidentiality Keeping data secret

Integrity Testing whether data has been tampered with

Authentication Checking whether an entity is who it claims to be

CONFIDENTIALITY

Confidentiality Overview

- Keeping data secret from eavesdroppers
- Data must be retrievable
- Broken when the attacker becomes able to decrypt encrypted content

Confidentiality – Key Concepts

Plaintext

The text before it is encrypted; the input of the encryption algorithm

Ciphertext

The text after it was encrypted; the output of the encryption algorithm

Key

A second input, usually secret, used to customize the encryption algorithm

Key space

- The set of data from which keys may be selected
- A larger set of keys leads to an increase in the duration of brute force attempts

Caesar	Class	Classical Monoalphabetic substitution Symmetrical
G ucsu.	Date invented	1st century BC
	Prerequisites	Both parties must know the secret key

- One of the earliest known uses of encryption
- Used by Julius Caesar during military campaigns

Caesar cipher – Algorithm

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext

Monoalphabetic substitution table:

Caesar cipher – Conclusion

The key

Key space: $26 \approx 2^5$

Key format: Number or letter

Weaknesses:

Brute force attacks (low key space)

Frequency analysis

Known plaintext attacks

Keys must be preshared

Verdict: Do not use

	Class	Classical Monoalphabetic substitution Symmetric				
Substitution cipher	Date invented	Specific types in use during 1st century BC				
	Prerequisites	Both parties must know the secret key				

- One letter (or byte) is substituted for another letter (or byte), according to a permutation
- Caesar cipher is a specific type of substitution cipher
- Many ancient ciphers were variants of the simple substitution cipher

Substitution cipher – Algorithm

- The key is a permutation
- Example #1: Key = $\{2, 3, 4, 5, 6, 1\}$

• Example #2: Key = $\{1, 6, 4, 3, 2, 5\}$

BEEF
$$\rightarrow$$
 FBBE
Key = {1, 6, 4, 3, 2, 5}
Alice

FBBE \rightarrow BEEF Key = {1, 6, 4, 3, 2, 5}

Substitution cipher – Conclusion

The key

Key space: $P_{26} \cong 2^{88}$

Key format: Permutation

Weaknesses:

Frequency analysis
Known plaintext attacks
Keys must be preshared

Verdict: Do not use

	Class	Classical Polyalphabetic substitution Symmetric
Vigenere	Date invented	16th century
	Prerequisites	Both parties must know the secret key

- Composed of 26 inverted Caesar ciphers
- Difficulty in breaking it at the time gave it the nickname The unbreakable cipher

Vigenere cipher – Algorithm

Key:

SCR

Plaintext:

Hello world

Ciphertext:

333

HELLOWORLD

SCRSCRSCRS

ZECDQNG...

		Α	В	С	D	Ε	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Υ	Z
	A	Α	В	С	D	Ε	F	G	Н	-	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
	В	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α
	C	С	D	Ε	F	G	Н		J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Ζ	Α	В
	D	D	Ε	F	G	Н	ı	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С
	Е	Ε	F	G	Н	I	J	K	L	M	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D
	F	F	G	Н	I	J	K	L	M	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε
	G	G	Н	-1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F
	Н	Н	ı	J	K	L	M	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G
	I	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н
	J	J	K	L	M	Ν	0	Р	Q	R	S	T	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	Ε	F	G	Н
	K	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	Ε	F	G	Н	I
	L	L	M	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	Ε	F	G	Н	1	J
ſ	M	M	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	Ε	F	G	Н	1	J	K
	N	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M
	0	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	-1	J	K	L	M	Ν
	P	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	Ν	0
	Q	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	N	0	Р
	R	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q
	S	S	Т	U	V	W	X	Υ	Ζ	Α	В	С	D	Е	F	G	Н	-	J	K	L	М	N	0	Р	Q	R
	T	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S
	U	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	-	J	K	L	M	Ν	0	Р	Q	R	S	Т
'	V	V	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	-	J	K	L	M	N	0	Р	Q	R	S	Т	U
١	N	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	-	J	K	L	M	N	0	Р	Q	R	S	Т	U	V
	X	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W
	Υ	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	Χ
	Z	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	Χ	Υ

Vigenere cipher – Conclusion

The key

Key space: Infinite

Key format: Letter sequence

Weaknesses:

Brute force (due to bad key choices)

Frequency analysis

Known plaintext attacks

Keys must be preshared

Verdict: Do not use

	Class	Classical Symmetric
ОТР	Date invented	1882/1917
	Prerequisites	Both parties must know the secret key

- Shannon proved that the OTP leaks no information about the plaintext message
- The key must be as long as the message
- If the key is used more than once, OTP security is broken

One time pad – Algorithm

Hello world Hello world 000100011... 000100011... 111110000... \oplus \Rightarrow 111010011... 111010011... **OTP OTP** Bob Alice

One time pad – Conclusion

The key

Key space: 2^{length}

Key format: Bit sequence

Weaknesses:

Broken by chosen plaintext attacks

Keys must be preshared

Keys are as long as the message

Keys must only be used once

Verdict: Use with care

	Class	Modern Symmetric
DES	Date published	1977
	Prerequisites	Both parties must know the secret key

- Data Encryption Standard
- The first US federal standard for encryption algorithms
- Extensively studied since the 1970s
- Advances in computing power rendered it obsolete

The key

Key space: 2^{56} (approx.)

Key format: Bit sequence

Weaknesses:

Brute force feasible with current processors Keys must be preshared

Verdict: Do not use

	Class	Modern Symmetric
3DES	Date published	1998
	Prerequisites	Both parties must know the secret key

- Block algorithm, based on three iterations of DES
- Multiple keying options
 - Option 1: all keys are independent
 - Option 2: $K_1 = K_3$; K_1 , K_2 independent
 - Option 3: $K_1 = K_2 = K_3$

3DES – Algorithm (keying option 1)

The key

Key space: 2^{168}

Best known attack: 2¹¹²

Key format: Bit sequence

Weaknesses:

Keys must be preshared

Slower than other safe options

Verdict: Safe to use

	Class	Modern Symmetric
AES	Date published	1998
	Prerequisites	Both parties must know the secret key

- AES is the 128 bit block version of the Rijndael Cipher
- Very fast
- Hardware support
- AES-128, AES-192 and AES-256 refer to key sizes, and not block sizes

The key

Key space: 2^{128} , 2^{192} , 2^{256}

Best known attacks: $2^{126.1}$, $2^{189.7}$, $2^{254.4}$

Key format: Bit sequence

Weaknesses:

Keys must be preshared

Verdict: Safe to use

	Class	Modern Asymmetric
RSA	Date published	1977
	Prerequisites	Receiving party must know the public key

- The algorithm uses a key pair:
 - The public key (PubKey, or e); this is free to share
 - The private key (PrivKey, or d); this must be kept secret by the owner
- The important property is that $(x^e)^d = (x^d)^e = x$ (inside an algebraic structure with certain properties)

Why isn't the private key used for encryption?

RSA Encryption – Conclusion

The key

Key **size**: 2^{1024} to 2^{4096} , or larger

Best known brute forced key: 2⁷⁶⁸

Key format: Large numbers, key pair

Weaknesses:

Very slow

Verdict: Use sparingly

Confidentiality – Conclusion

- Problems left to solve:
 - Key distribution
 - Message integrity
- Possible attacks:
 - Brute force
 - Cryptananalysis
 - Frequency analysis
 - Known plaintext/ciphertext cryptanalysis attacks
 - Chosen plaintext/ciphertext cryptanalysis attacks

SECURE KEY EXCHANGES

DH	Class	Key exchange algorithm
	Date published	1976
	Prerequisites	Authentication

The problem:

- Internet traffic requires encryption
- Asymmetric encryption algorithms may share public keys freely, but they are too slow during encryption/decryption
- Symmetric encryption algorithms require preshared keys

Diffie Hellman – Algorithm

Compute
$$k = (g^b)^a$$

Compute
$$k = (g^a)^b$$

Eve Know
$$g$$
, g^a , g^b , $k = ???$

Weakness:

MITM attacks

INTEGRITY

- Integrity algorithms detect whether a message (or file) has been tampered with
- Hash functions output a fixed length summary of the message
- Good hash functions output very different results when small changes are performed on the input message

- A hash function is not invertible
 - multiple messages may yield the same hash
 - a hash is considered broken when two such messages are discovered
 - this is called a hash collision, and it means the hash has been broken

	Class	Hashing algorithm
MD5	Date published	1992
	Hash length	128 bit

- MD5 is not collision resistant
- Collisions for file checksums have already been generated

Verdict: Strongly discouraged

SHA	Class	Hashing algorithm
	Date published	1995 (SHA-1), 2001 (SHA-2), 2012 (SHA-3)
	Hash length	128 bit

- SHA-1 is now considered broken, but still used by many implementations
- SHA-2 is a federal standard since 2001
- SHA-3 uses a different algorithm to SHA-1 and SHA-2

Verdict for SHA-1: Strongly discouraged

Verdict for SHA-2: Safe for use

MD5 and SHA use cases

- File checksums
 - For programs, packages, spreadsheets
- Certificate fingerprints (for HTTPS, more on that later)
- Password storage (Linux /etc/shadow)
- Distributed version control (Git, Mercurial)
- Network protocols with protection against message tampering

Keyed Hashing

- Same as hashing, but a pre-shared key is also hashed along with the message
- Also known as HMAC (Hash-based Message Authentication Code)

- The RSA private key can also be used for encryption
 - The advantage is that anyone can decrypt, thus proving that the data was actually encrypted by the sender
 - Also provides non-repudiation

AUTHENTICATION

Password based authentication

- Storing passwords in clear is not recommended
 - Any breach immediately compromises user accounts

Password based authentication

- Everything is better with salt
 - The same password will produce different hashes due to different salts
 - Prebuilt hash libraries for common passwords are useless

Challenge based authentication

 Solves the problem of authenticating endpoints when a secret key is pre-shared, without transmitting the key over the wire

Certificate based authentication

- Certificates contain information about an entity, verified by another trusted entity called a CA (certificate authority)
- Certificates are used to prove that the public key is legit

HTTPS/TLS

HTTPS = HTTP over TLS

TLS: Server authenticates to client

Server

SSL settings, ciphers, etc.

SSL settings, ciphers, etc. + Certificate

Verify Certificate

Generate master secret S

S, encrypted with PubKey from Certificate

Decrypt master secret S

Generate session $\ker K = f(S)$

Generate session key K = f(S)

Notify further messages are encrypted

Finish setup, encrypted with K

Use K for encryption and integrity

TLS: Certificate verification

- Two paranoid users do not trust any third party
- How can they establish a secure channel on the Internet, without exchanging prior knowledge? Secure means:
 - Tampering must be detected
 - No third party is able to retrieve private data (even if said party poses as a one of the users, or performs a MITM attack)
 - Covert information or side channels may not be used

Conclusion

- Cryptographic algorithms for:
 - Data confidentiality
 - Data integrity
 - Authentication
- Further reading:
 - The codebreakers, by David Kahn
 - The code book, by Simon Singh
 - Handbook of applied cryptography, by Alfred Menezes
- Other related topics not discussed now: steganography, covert channels, homomorphic encryption, identity-based encryption, elliptic curve cryptography, pairing-based cryptography, Tor network