
Android Security Mechanisms
Lecture 8

Operating Systems Practical

7 December 2016

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

OSP Android Security Mechanisms, Lecture 8 1/35

Signing Applications

UIDs and File Access

Android Permissions

Cryptographic Providers

Bibliography

OSP Android Security Mechanisms, Lecture 8 2/35

Outline

Signing Applications

UIDs and File Access

Android Permissions

Cryptographic Providers

Bibliography

OSP Android Security Mechanisms, Lecture 8 3/35

Signing Applications

I Each apk signed with a certificate
I Generated using the developer’s private key
I Identifies the developer of the application
I Can be self-signed

I System applications signed with the platform key

I Update allowed only if the certificate matches

OSP Android Security Mechanisms, Lecture 8 4/35

Outline

Signing Applications

UIDs and File Access

Android Permissions

Cryptographic Providers

Bibliography

OSP Android Security Mechanisms, Lecture 8 5/35

UIDs and File Access

I Unique UID at install time for each application

I Access rights on application’s files - other applications cannot
access those files

I Shared UID
I sharedUserId attribute of <manifest>
I Signed with the same key
I Treated as the same application, same UID and file permissions

I Share files with other applications
I MODE_WORLD_READABLE or MODE_WORLD_WRITABLE when

creating a file
I Gives read or write access to files

OSP Android Security Mechanisms, Lecture 8 6/35

Outline

Signing Applications

UIDs and File Access

Android Permissions

Cryptographic Providers

Bibliography

OSP Android Security Mechanisms, Lecture 8 7/35

Android Permissions

I By default, applications cannot perform operations to impact
other apps, the OS or the user

I Permission - the ability to perform a particular operation
I Built-in permissions documented in the platform API

reference
I Defined in the android package

I Custom permissions - defined by system or user apps

I pm list permissions

I Defining package + .permission + name
I android.permission.REBOOT
I com.android.laucher3.permission.RECEIVE_LAUNCH_-

BROADCASTS

OSP Android Security Mechanisms, Lecture 8 8/35

Android Permissions

I Apps request permissions in AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

I Permissions handled by the PackageManager service
I Central database of installed packages

I /data/system/packages.xml

I Programatically access package information from
android.content.pm.PackageManager

I getPackageInfo() returns PackageInfo instance

I Cannot be changed or revoked without uninstalling app (until
Android 5.1)

I Android 6.0: apps request permissions at runtime

OSP Android Security Mechanisms, Lecture 8 9/35

Permission Enforcement

I A permission can be enforced in a number of places
I Making a call into the system
I Starting an activity
I Starting and binding a service
I Sending and receiving broadcasts
I Accessing a content provider

OSP Android Security Mechanisms, Lecture 8 10/35

Permission Protection Levels

I Potential risk and procedure to grant permission
I Normal

I Low risk
I Automatically granted without user confirmation
I ACCESS_NETWORK_STATE, GET_ACCOUNTS

I Dangerous
I Access to user data or control over the device
I Requires user confirmation
I CAMERA, READ_SMS

OSP Android Security Mechanisms, Lecture 8 11/35

Permission Protection Levels

I Signature
I Highest level of protection
I Apps signed with the same key as the app that declared the

permission
I Built-in signature permissions are used by system apps (signed

with platform key)
I NET_ADMIN, ACCESS_ALL_EXTERNAL_STORAGE

I SignatureOrSystem
I Apps part of system image or signed with the same key as the

app that declared the permission
I Vendors may have preinstalled apps without using the platform

key

OSP Android Security Mechanisms, Lecture 8 12/35

Permission Groups

I All dangerous permissions belong to permission groups
I Until Android 5.1:

I Permission groups are requested at install time (not the
individual permissions)

I On Android 6.0:
I If there is no other permission in that group, it requests the

user’s confirmation for that permission group
I If there is another permission in that group already granted, it

does not request any confirmation

I Examples of dangerous permission groups:
I Calendar, Camera, Contacts, Location, Phone, SMS, Sensors,

Storage, Microphone

OSP Android Security Mechanisms, Lecture 8 13/35

Kernel-Level Enforcement

I Access to regular files, device nodes and local sockets
managed by the Linux kernel, based on UID, GID

I Permissions are mapped to supplementary GIDs

I Built-in permission mapping in
/etc/permission/platform.xml

I Example:
I INTERNET permission associated with GID inet
I Only apps with INTERNET permission can create network

sockets
I The kernel verifies if the app belongs to GID inet

OSP Android Security Mechanisms, Lecture 8 14/35

Framework-Level Enforcement

I Static permission enforcement
I System keeps track of permissions associated to each app

component
I Checks whether callers have the required permission before

allowing access
I Enforcement by runtime environment
I Isolating security decisions from business logic
I Less flexible

I Dynamic permission enforcement
I Components check to see if the caller has the necessary

permissions
I Decisions made by each component, not by runtime

environment
I More fine-grained access control
I More operations in components

OSP Android Security Mechanisms, Lecture 8 15/35

Dynamic Enforcement

I Helper methods in android.content.Context class to
perform permission check

I checkPermission(String permission, int pid, int
uid)

I Returns PERMISSION_GRANTED or PERMISSION_DENIED
I For root and system, permission is automatically granted
I If permission is declared by calling app, it is granted
I Deny for private components
I Queries the Package Manager

I enforcePermission(String permission, int pid, int
uid, String message)

I Throws SecurityException with message if permission is not
granted

OSP Android Security Mechanisms, Lecture 8 16/35

Static Enforcement

I An app tries to call a component of another app - intent

I Target component - android:permission attribute

I Caller - <uses-permission>
I Activity Manager

I Resolves intent
I Checks if target component has an associated permission
I Delegates permission check to Package Manager

I If caller has necessary permission, the target component is
started

I Otherwise, a SecurityException is generated

OSP Android Security Mechanisms, Lecture 8 17/35

Activity and Service Permission Enforcement

I Permission checks for activities
I Intent is passed to Context.startActivity() or

startActivityForResult()
I Resolves to an activity that declares a permission

I Permission checks for services
I Intent passed to Context.startService() or

stopService() or bindService()
I Resolves to a service that declares a permission

I If caller does not have the necessary permission, generates
SecurityExceptions

OSP Android Security Mechanisms, Lecture 8 18/35

Content Provider Permission Enforcement

I Protect the whole component or a particular exported URI

I Different permissions for reading and writing

I Read permission - ContentResolver.query() on provider or
URI

I Write permission - ContentResolver.insert(),
update(), delete() on provider or URI

I Synchronous checks

OSP Android Security Mechanisms, Lecture 8 19/35

Broadcast Permission Enforcement

I Receivers may be required to have a permission
I Context.sendBroadcast(Intent intent, String

receiverPermission)
I Check when delivering intent to receivers
I No permission - broadcast not received, no exception

I Broadcasters may need to have a permission to send a
broadcast

I Specified in manifest or in registerReceiver
I Checked when delivering broadcast
I No permission - no delivery, no exception

I 2 checks for each delivery: for sender and receiver

OSP Android Security Mechanisms, Lecture 8 20/35

Custom Permissions

I Declared by apps

I Checked statically by the system or dynamically by the
components

I Declared in AndroidManifest.xml

<pe rm i s s i on−t r e e
and ro i d : name=”com . example . app . p e rm i s s i o n ”
and ro i d : l a b e l=”@ s t r i n g / e x amp l e p e rm i s s i o n t r e e l a b e l ” />

<pe rm i s s i on−group
and ro i d : name=”com . example . app . p e rm i s s i on−group .TEST GROUP”
and ro i d : l a b e l=”@ s t r i n g / t e s t p e rm i s s i o n g r o u p l a b e l ”
and ro i d : d e s c r i p t i o n=”@ s t r i n g / t e s t p e rm i s s i o n g r o u p d e s c ” />

<p e rm i s s i o n
and ro i d : name=”com . example . app . p e rm i s s i o n . PERMISSION1”
and ro i d : l a b e l=”@ s t r i n g / p e rm i s s i o n 1 l a b e l ”
and ro i d : d e s c r i p t i o n=”@ s t r i n g / p e rm i s s i o n 1 d e s c ”
and ro i d : pe rm i s s i onGroup=”com . example . app . p e rm i s s i on−group .TEST GROUP”
and ro i d : p r o t e c t i o n L e v e l=”s i g n a t u r e ” />

OSP Android Security Mechanisms, Lecture 8 21/35

Outline

Signing Applications

UIDs and File Access

Android Permissions

Cryptographic Providers

Bibliography

OSP Android Security Mechanisms, Lecture 8 22/35

JCA Provider Architecture

I Java Cryptography Architecture (JCA)
I Extensible cryptographic provider framework
I Set of APIs - major cryptographic primitives
I Applications specify an algorithm, do not depend on particular

provider implementation

I Cryptographic Service Provider (CSP)
I Package with implementation of cryptographic services
I Advertises the implemented services and algorithms
I JCA maintains a registry of providers and their algorithms
I Providers in a order of preference

I Service Provider Interface (SPI)
I Common interface for implementations of a specific algorithm
I Abstract class implemented by provider

OSP Android Security Mechanisms, Lecture 8 23/35

JCA Engine Classes

I JCA engines provide:
I Cryptographic operations (encrypt/decrypt, sign/verify, hash)
I Generation or conversion of cryptographic material (keys,

parameters)
I Management and storage of cryptographic objects (keys,

certificates)

I Decouple client code from algorithm implementation

I Static factory method getInstance()

I Request implementation indirectly

s t a t i c EngineClassName g e t I n s t a n c e (S t r i n g a l g o r i t hm)
throws NoSuchAlgor i thmExcept ion

s t a t i c EngineClassName g e t I n s t a n c e (S t r i n g a l go r i t hm , S t r i n g p r o v i d e r)
throws NoSuchAlgor i thmExcept ion , NoSuchProv ide rExcept i on

s t a t i c EngineClassName g e t I n s t a n c e (S t r i n g a l go r i t hm , P r o v i d e r p r o v i d e r)
throws NoSuchAlgor i thmExcept ion

OSP Android Security Mechanisms, Lecture 8 24/35

Message Digest

I Hash function

MessageDigest md = MessageDiges t . g e t I n s t a n c e (”SHA−256”);
by te [] data = getMessage () ;
by te [] hash = md. d i g e s t (data) ;

I Data provided in chuncks using update() then call digest()

I If data is short and fixed - hashed in one step using digest()

OSP Android Security Mechanisms, Lecture 8 25/35

Signature

I Digital signature algorithms based on asymmetric encryption

I Algorithm name: <digest>with<encryption>

I Sign:

byte [] data = ”message to be s i g n ed ” . ge tBy te s (” ASCII ”) ;

S i g n a t u r e s = S i gna t u r e . g e t I n s t a n c e (” SHA256withRSA ”) ;
s . i n i t S i g n (p r i vKey) ;
s . update (data) ;
by te [] s i g n a t u r e = s . s i g n () ;

I Verify:

S i g na t u r e s = S i gna t u r e . g e t I n s t a n c e (” SHA256withRSA ”) ;
s . i n i t V e r i f y (pubKey) ;
s . update (data) ;
boo l ean v a l i d = s . v e r i f y (s i g n a t u r e) ;

OSP Android Security Mechanisms, Lecture 8 26/35

Cipher

I Encryption and decryption operations

I Encryption:

Se c r e t key = ge tSec r e tKey () ;

C iphe r c = C iphe r . g e t I n s t a n c e (”AES/CBC/PKCS5Padding ”) ;

by te [] i v = new byte [c . g e tB l o c kS i z e ()] ;
SecureRandom s r = new SecureRandom () ;
s r . n ex tBy te s (i v) ;
I vParamete rSpec i v p = new IvParamete rSpec (i v) ;
c . i n i t (C iphe r .ENCRYPT MODE, key , i v p) ;

by te [] data = ”Message to en c r yp t ” . ge tBy t e s (”UTF−8”);
by te [] c i p h e r t e x t = c . doF i n a l (data) ;

OSP Android Security Mechanisms, Lecture 8 27/35

Cipher

I Decryption:

Ciphe r c = C iphe r . g e t I n s t a n c e (”AES/CBC/PKCS5Padding ”) ;
c . i n i t (C iphe r .DECRYPT MODE, key , i v p) ;

by te [] data = c . doF i n a l (c i p h e r t e x t) ;

OSP Android Security Mechanisms, Lecture 8 28/35

MAC

I Message Authentication Code algorithms

Secre tKey key = ge tSec r e tKey () ;
Mac m = Mac . g e t I n s t a n c e (”HmacSha256 ”) ;
m. i n i t (key) ;
by te [] data = ”Message ” . ge tBy te s (”UTF−8”);
by te [] hmac = m. doF i n a l (data) ;

OSP Android Security Mechanisms, Lecture 8 29/35

KeyGenerator

I Generates symmetric keys

I Additional checks for weak keys

I Set key parity when necessary

I Takes advantage of the cryptographic hardware

KeyGenerator kg = KeyGenerator . g e t I n s t a n c e (”HmacSha256 ”) ;
Sec re tKey key = kg . gene ra teKey () ;

KeyGenerator kg = KeyGenerator . g e t I n s t a n c e (”AES”) ;
kg . i n i t (2 5 6) ;
Sec re tKey key = kg . gene ra teKey () ;

OSP Android Security Mechanisms, Lecture 8 30/35

KeyPairGenerator

I Generates public and private keys

KeyPa i rGene ra to r kpg = KeyPa i rGene ra to r . g e t I n s t a n c e (”RSA”) ;
kpg . i n i t i a l i z e (1 024) ;
KeyPai r p a i r = kpg . g ene r a t eKeyPa i r () ;
P r i va t eKey p r i v = p a i r . g e t P r i v a t e () ;
Pub l i cKey pub = p a i r . g e tPub l i c () ;

OSP Android Security Mechanisms, Lecture 8 31/35

Android JCA Providers

I Harmony’s Crypto Provider
I Limited JCA provider part of the Java runtime library
I SecureRandom (SHA1PRNG), KeyFactory (DSA)
I MessageDigest (SHA-1), Signature (SHA1withDSA)

I Android’s Bouncy Castle Provider
I Full-featured JCA provider
I Part of the Bouncy Castle Crypto API
I Cipher, KeyGenerator, Mac, MessageDigest, SecretKeyFactory,

Signature, CertificateFactory
I Large number of algorithms

I AndroidOpenSSL Provider
I Native code, performance reasons
I Covers most functionality of Bouncy Castle
I Preferred provider
I Implementation uses JNI to access OpenSSL’s native code

OSP Android Security Mechanisms, Lecture 8 32/35

Outline

Signing Applications

UIDs and File Access

Android Permissions

Cryptographic Providers

Bibliography

OSP Android Security Mechanisms, Lecture 8 33/35

Bibliography

I Android Security Internals, Nikolay Elenkov

I http://developer.android.com/guide/topics/

security/permissions.html

OSP Android Security Mechanisms, Lecture 8 34/35

http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

Keywords

I Permissions

I Protection levels

I Static enforcement

I Dynamic enforcement

I Custom permissions

I Java Cryptography Architecture

I Cryptographic Service Provider

I Engine classes

OSP Android Security Mechanisms, Lecture 8 35/35

	Signing Applications
	UIDs and File Access
	Android Permissions
	Cryptographic Providers
	Bibliography

