
Operating Systems - Advanced

1Tuesday, October 6, 2009

 Installs itself without the user being aware
 Monitors user behavior
 Collects information like:

− passwords
− credit card numbers
− visited sites

 Interferes with the existing software (intentionally or
unintentionally)

Spyware

2Tuesday, October 6, 2009

 Most Spyware installs as BHO
 A BHO is a library, a plugin for Microsoft Internet

Explorer
 A BHO has access to the entire DOM and to all IE

events
 Example BHO spyware:

 activates itself upon detection of a SSL connection, records all
keyboard events then sends them to a webserver

Browser Helper Objects

3Tuesday, October 6, 2009

 Similar to Anti-Virus products
 Technology based on signatures

 does not protect against “zero-day” attacks
 Signatures are collected manually

 expensive, Anti-Spyware vendors analyze hundreds of samples
 Regular updates are necessary
 Simple obfuscation techniques can be employed

Existing Anti-Spyware

4Tuesday, October 6, 2009

“A distinctive characteristic of spyware is that a spyware
component (or process) collects data about user
behavior and forwards this information to a third party.
Thus, a BHO is classified as spyware when it (i)
monitors user behavior (ii) then leaks the gathered data
to the attacker.”

The problem

5Tuesday, October 6, 2009

 Semi-automated classification of BHOs into benign
and malign

 Detailed reporting of the BHO behavior

Scope of solution

6Tuesday, October 6, 2009

 Do a dynamic analysis of the information flow in the
browser and the associated BHOs

 Use “taint analysis”
 Identify “leaked” data

Approach

7Tuesday, October 6, 2009

 Detection of stolen data:
 E.g. URLs, snippet of a Web page, etc

 Detection of how data is transported:
 E.g.: sent over the net, stored in a file and sent from another process,

etc.

Benefits

8Tuesday, October 6, 2009

 Interesting data is marked then tracked throughout the
system
− E.g.: copying a tainted byte A to a memory location B marks B

as tainted

Tainting

9Tuesday, October 6, 2009

 Starts by marking as tainted the URLs and the content
of web pages

 Continues by tracking the data through the browser
code and then BHO code

 If the tainted data gets “stolen” - i.e. is sent to a socket
or to a file, the action is recorded and the BHO is
marked as spyware

Tainting - applied

10Tuesday, October 6, 2009

 It is necessary to use system level taint analysis.
 Interesting data is stored in registers and physical

memory.
 Data needs to be tracked in kernel-space as well.

Conclusion

11Tuesday, October 6, 2009

 The tainting system needs to know:
− when an instruction is run in kernel mode
− when an instruction runs in the context of a certain process
− moreover, when an instruction runs in the context of a BHO

 We need:
 “operating system awarness”

Therefore...

12Tuesday, October 6, 2009

System architecture

13Tuesday, October 6, 2009

 QEMU/ Windows 2000 / x86 / IE
 Shadow memory – one byte for every byte of physical

memory plus the registers
− a byte is necessary istead of a bit in order to use multiple

labels
− a certain area can be accessed by both IE and the BHO

System architecture (2)

14Tuesday, October 6, 2009

 The BHO is installed
 IE is launched - loads the BHO
 Launch the testcase generator - simulating browsing

sessions
 Mark URLs and page content
 Track sensitive data using the taint analysis system

How to test

15Tuesday, October 6, 2009

 Data dependencies
• marks all outputs for operations that have one input tainted
• an entry is considered tainted when an index is tainted

 Not enough!
• control dependencies need to be investigated

Dynamic taint propagation

16Tuesday, October 6, 2009

Control dependencies

17Tuesday, October 6, 2009

 In the example t was propagated as clean
 To solve this, we need to identify all instructions

associated with a conditional branch and considered as
having tainted inputs

Control dependencies (2)

18Tuesday, October 6, 2009

 Finding the “post-dominator” - the instruction after
which we stop

 Build a partial CFG (Control Flow Graph)
 start at the branching instruction
 follow all paths until they all intersect (Lengauer-Tarjan)
 the solution uses a recursive disassembler

How? Static analysis

19Tuesday, October 6, 2009

 ret, jmp instructions to unresolved targets
 assumes the executable is not “self modifiable” because the system

detects this behavior and marks the BHO malign
 The CFG can be incomplete

 more than one post-dominators -> marks the BHO as malign

Problems

20Tuesday, October 6, 2009

 We need to clear taint status:
− when an operation with all inputs untainted has the output in a

tainted location
− when constants are propagated into tainted zones
− e.g. xor %eax, %eax;

Untainting

21Tuesday, October 6, 2009

 Qemu offers a hardware level view of the system:
registers, physical memory, I/O ports

 We need to identify: processes, user, kernel, BHO

Identifying entities

22Tuesday, October 6, 2009

 We use the CR3 register
 holds the page table of the current process
 every process has a unique address space
 every process has a unique CR3

 If we can map CR3 to processes - we know if the
current instruction executes in the context of that
process

Identifying processes

23Tuesday, October 6, 2009

 Intercepts NtCreateProcess
 checks that EIP is the NtCreateProcess start address, known by

looking into ntoskrnl.exe
 checks the process name

 Complication: virtual memory
 Qemu accesses physical memory
 Solution: manually translate virtual into physical address by using

the CR3 page table

Finding out CR3 for IE

24Tuesday, October 6, 2009

 Obvious solution
 all instructions have the EIP in the text segment of the BHO
 has a problem

 What if the BHO calls code in another library or from
IE itself? Solution:

 when the control is transferred from the IE to BHO, record the SP
value

 at every modification of the SP, checks the new value to be below
the recorded one

Identifying the BHO

25Tuesday, October 6, 2009

 Intercept LdrLoadDLL
− maps a library, BHO, etc into the IE address space
− returns the start address upon successful completion

 Segment size
− stored in EPROCESS
− the EPROCESS of the current process is mapped at a fixed

memory location

How to identify the code segment of the
BHO?

26Tuesday, October 6, 2009

 Threads
 mess up the SP based analysis
 solution: identify the thread switch when returning from kernel into

user, by looking at thread_id (in the KTHREAD structure)
 Evasion

 Injecting malicious code into the IE address space
 needs to change protection - monitored

 modifying SP
 we recognize this and record the new SP

Other problems

27Tuesday, October 6, 2009

 URL strings in memory
− Intercept IwebBrowser2::Navigate
− Mark the argument as tainted

 Web pages
− intercepts NtDeviceIoControlFile (receive) and marks the

buffer as tainted
 Use different labels for the each source type

Taint sources

28Tuesday, October 6, 2009

 Monitor the interfaces through which the tainted data
gets “out” of the process

 network communication (NtDeviceIoControlFile)
 file saving (NtWriteFile, NtCreateFile)
 IPC - SHM

Taint sinks

29Tuesday, October 6, 2009

 We need a browsing session that’s long enough to
trigger the BHO

 We need record-playback in order to mimic as closely
as possible human interaction with the browser

 Firefox plugin (recorder)
 W32 app to control IE (replay)

 gets a browser handle
 calls IwebBrowser2::Navigate to load the page
 uses DOM access to complete the forms

Automating the testing process

30Tuesday, October 6, 2009

Evaluation

31Tuesday, October 6, 2009

 Zango: “ad-supported freeware”
− zangohoo.dll -> BHO installed with IM client
− every URL is copied in a shared memory
− zango.exe reads these URLs and sends them over the net

Detailed analysis example

32Tuesday, October 6, 2009

• Spyware

• BHO

• DOM

• Taint analysis

• Static analysis

• QEMU

• CFG

• CR3

• zero-day

• shadow memory

• post-dominator

• EPROCESS

Questions?

33Tuesday, October 6, 2009

