
Operating Systems - Advanced

1Tuesday, October 6, 2009

 Installs itself without the user being aware
 Monitors user behavior
 Collects information like:

− passwords
− credit card numbers
− visited sites

 Interferes with the existing software (intentionally or
unintentionally)

Spyware

2Tuesday, October 6, 2009

 Most Spyware installs as BHO
 A BHO is a library, a plugin for Microsoft Internet

Explorer
 A BHO has access to the entire DOM and to all IE

events
 Example BHO spyware:

 activates itself upon detection of a SSL connection, records all
keyboard events then sends them to a webserver

Browser Helper Objects

3Tuesday, October 6, 2009

 Similar to Anti-Virus products
 Technology based on signatures

 does not protect against “zero-day” attacks
 Signatures are collected manually

 expensive, Anti-Spyware vendors analyze hundreds of samples
 Regular updates are necessary
 Simple obfuscation techniques can be employed

Existing Anti-Spyware

4Tuesday, October 6, 2009

“A distinctive characteristic of spyware is that a spyware
component (or process) collects data about user
behavior and forwards this information to a third party.
Thus, a BHO is classified as spyware when it (i)
monitors user behavior (ii) then leaks the gathered data
to the attacker.”

The problem

5Tuesday, October 6, 2009

 Semi-automated classification of BHOs into benign
and malign

 Detailed reporting of the BHO behavior

Scope of solution

6Tuesday, October 6, 2009

 Do a dynamic analysis of the information flow in the
browser and the associated BHOs

 Use “taint analysis”
 Identify “leaked” data

Approach

7Tuesday, October 6, 2009

 Detection of stolen data:
 E.g. URLs, snippet of a Web page, etc

 Detection of how data is transported:
 E.g.: sent over the net, stored in a file and sent from another process,

etc.

Benefits

8Tuesday, October 6, 2009

 Interesting data is marked then tracked throughout the
system
− E.g.: copying a tainted byte A to a memory location B marks B

as tainted

Tainting

9Tuesday, October 6, 2009

 Starts by marking as tainted the URLs and the content
of web pages

 Continues by tracking the data through the browser
code and then BHO code

 If the tainted data gets “stolen” - i.e. is sent to a socket
or to a file, the action is recorded and the BHO is
marked as spyware

Tainting - applied

10Tuesday, October 6, 2009

 It is necessary to use system level taint analysis.
 Interesting data is stored in registers and physical

memory.
 Data needs to be tracked in kernel-space as well.

Conclusion

11Tuesday, October 6, 2009

 The tainting system needs to know:
− when an instruction is run in kernel mode
− when an instruction runs in the context of a certain process
− moreover, when an instruction runs in the context of a BHO

 We need:
 “operating system awarness”

Therefore...

12Tuesday, October 6, 2009

System architecture

13Tuesday, October 6, 2009

 QEMU/ Windows 2000 / x86 / IE
 Shadow memory – one byte for every byte of physical

memory plus the registers
− a byte is necessary istead of a bit in order to use multiple

labels
− a certain area can be accessed by both IE and the BHO

System architecture (2)

14Tuesday, October 6, 2009

 The BHO is installed
 IE is launched - loads the BHO
 Launch the testcase generator - simulating browsing

sessions
 Mark URLs and page content
 Track sensitive data using the taint analysis system

How to test

15Tuesday, October 6, 2009

 Data dependencies
• marks all outputs for operations that have one input tainted
• an entry is considered tainted when an index is tainted

 Not enough!
• control dependencies need to be investigated

Dynamic taint propagation

16Tuesday, October 6, 2009

Control dependencies

17Tuesday, October 6, 2009

 In the example t was propagated as clean
 To solve this, we need to identify all instructions

associated with a conditional branch and considered as
having tainted inputs

Control dependencies (2)

18Tuesday, October 6, 2009

 Finding the “post-dominator” - the instruction after
which we stop

 Build a partial CFG (Control Flow Graph)
 start at the branching instruction
 follow all paths until they all intersect (Lengauer-Tarjan)
 the solution uses a recursive disassembler

How? Static analysis

19Tuesday, October 6, 2009

 ret, jmp instructions to unresolved targets
 assumes the executable is not “self modifiable” because the system

detects this behavior and marks the BHO malign
 The CFG can be incomplete

 more than one post-dominators -> marks the BHO as malign

Problems

20Tuesday, October 6, 2009

 We need to clear taint status:
− when an operation with all inputs untainted has the output in a

tainted location
− when constants are propagated into tainted zones
− e.g. xor %eax, %eax;

Untainting

21Tuesday, October 6, 2009

 Qemu offers a hardware level view of the system:
registers, physical memory, I/O ports

 We need to identify: processes, user, kernel, BHO

Identifying entities

22Tuesday, October 6, 2009

 We use the CR3 register
 holds the page table of the current process
 every process has a unique address space
 every process has a unique CR3

 If we can map CR3 to processes - we know if the
current instruction executes in the context of that
process

Identifying processes

23Tuesday, October 6, 2009

 Intercepts NtCreateProcess
 checks that EIP is the NtCreateProcess start address, known by

looking into ntoskrnl.exe
 checks the process name

 Complication: virtual memory
 Qemu accesses physical memory
 Solution: manually translate virtual into physical address by using

the CR3 page table

Finding out CR3 for IE

24Tuesday, October 6, 2009

 Obvious solution
 all instructions have the EIP in the text segment of the BHO
 has a problem

 What if the BHO calls code in another library or from
IE itself? Solution:

 when the control is transferred from the IE to BHO, record the SP
value

 at every modification of the SP, checks the new value to be below
the recorded one

Identifying the BHO

25Tuesday, October 6, 2009

 Intercept LdrLoadDLL
− maps a library, BHO, etc into the IE address space
− returns the start address upon successful completion

 Segment size
− stored in EPROCESS
− the EPROCESS of the current process is mapped at a fixed

memory location

How to identify the code segment of the
BHO?

26Tuesday, October 6, 2009

 Threads
 mess up the SP based analysis
 solution: identify the thread switch when returning from kernel into

user, by looking at thread_id (in the KTHREAD structure)
 Evasion

 Injecting malicious code into the IE address space
 needs to change protection - monitored

 modifying SP
 we recognize this and record the new SP

Other problems

27Tuesday, October 6, 2009

 URL strings in memory
− Intercept IwebBrowser2::Navigate
− Mark the argument as tainted

 Web pages
− intercepts NtDeviceIoControlFile (receive) and marks the

buffer as tainted
 Use different labels for the each source type

Taint sources

28Tuesday, October 6, 2009

 Monitor the interfaces through which the tainted data
gets “out” of the process

 network communication (NtDeviceIoControlFile)
 file saving (NtWriteFile, NtCreateFile)
 IPC - SHM

Taint sinks

29Tuesday, October 6, 2009

 We need a browsing session that’s long enough to
trigger the BHO

 We need record-playback in order to mimic as closely
as possible human interaction with the browser

 Firefox plugin (recorder)
 W32 app to control IE (replay)

 gets a browser handle
 calls IwebBrowser2::Navigate to load the page
 uses DOM access to complete the forms

Automating the testing process

30Tuesday, October 6, 2009

Evaluation

31Tuesday, October 6, 2009

 Zango: “ad-supported freeware”
− zangohoo.dll -> BHO installed with IM client
− every URL is copied in a shared memory
− zango.exe reads these URLs and sends them over the net

Detailed analysis example

32Tuesday, October 6, 2009

• Spyware

• BHO

• DOM

• Taint analysis

• Static analysis

• QEMU

• CFG

• CR3

• zero-day

• shadow memory

• post-dominator

• EPROCESS

Questions?

33Tuesday, October 6, 2009

