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Operating Systems Security
Associate Prof. Mihai Chiroiu



• There was once a young man who, in his youth, professed 
his desire to become a great writer. When asked to define 
"Great" he said, "I want to write stuff that the whole world 
will read, stuff that people will react to on a truly emotional 
level, stuff that will make them scream, cry, howl in pain and 
anger!" He now works for Microsoft, writing error messages.
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OS principles

• hardware abstraction 

• resource management: accounting, scheduling, and synchronisation

• storage and communication services: file systems, network, inter-
process communication (IPC)

• libraries of common functions: libc

• management of user interaction and interface

• More here: http://ocw.cs.pub.ro/courses/so
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Stats (all time)
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https://www.cvedetails.com/top-50-products.php

https://www.cvedetails.com/top-50-products.php


What should the OS protect?

• Itself (from users)

• Processes (both services and user’s application)

• Files access

• Communication (both IPC and network)
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First, authentication

• Most common technique are passwords (i.e., something you know)
• Stored as hashes typically using a random salt

• Tokens (i.e., something you have)
• Using HSM

• Often combined with a PIN

• Biometrics (i.e., something you are)
• Fingerprints, iris scans, etc. 

• We will assume that authentication is validated!
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Windows 10
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Virtualization-based security (VBS)
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VBS in the (private) cloud
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Code Integrity

• Kernel Mode Code Integrity (KMCI)
• Validate drivers’ signature

• User Mode Code Integrity (UMCI)
• Validate apps signature

• AppLocker
• Policy for what applications can be executed
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Protected Processes

• Windows 10 prevents untrusted processes from interacting or
tampering with those that have been specially signed.

• Protected Processes defines levels of trust for processes.

• Less trusted processes are prevented from interacting with and
therefore attacking more trusted processes.
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Address Space Layout Randomization (ASLR)
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• Present in most OSes

• Not a real solution 

(part of a complex one) [1]



ASLR implementation

• On Windows, ASLR does not affect runtime performance, but it can
slow down the initial loading of modules.
• ASLR also randomizes heap and stack memory

• On Linux, ASLR imposes 26% [9]

• On Android, ASLR bases for all others and the bases remain constant
across executions [10]

• On iOS, dyld_shared_cache (libraries) load address is randomized (at
boot time) [11]

• ASLR cannot be force-enabled for applications on Linux (they must be
compiled with PIE), as EMET can do on Windows.
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Data Execution Prevention (DEP)

• DEP uses the No eXecute bit on modern CPUs

• Available on all major Oses

• Not real use if you can access mprotect/VirtualProtect/etc.
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TrueCrypt - Full-disk encryption (3rd party)

• Password used to encrypt/decrypt when mounting the partition.

• Supports plausible deniability
• can be configured to hide even the existence of encrypted data.

• Unused space on an encrypted partition is initialized with random data,
encrypted volume is indistinguishable from such random data.
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BitLocker – Full-disk encryption

• Encrypting entire hard drives

• Support for Self-Encrypting Drives (SED) for offloading encryption

• Uses Trusted Platform Module (TPM) v1.2 to validate pre-OS 
components
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Where’s the Encryption Key?

1. SRK (Storage Root Key)
contained in TPM 

2. SRK encrypts FVEK (Full Volume 
Encryption Key) protected by 
TPM/PIN/USB Storage Device

3. FVEK stored (encrypted by SRK) on 
hard drive in the OS Volume

System

OS Volume

3

2 FVEK 1 SRK



File permissions

• Stored as an ACE in a discretionary access control list (DACL) that is 
part of the object’s security descriptor.

• Permissions can also be explicitly denied.

• Inherited permissions are those that are propagated to a child object 
from a parent object.
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Network access

• Per application firewall
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Microsoft Bounty Programs

• Online Services Bug Bounty (Microsoft Azure services additions: 22nd 
April 2015)
• $500 USD up to $15,000 USD.

• Mitigation Bypass Bounty (Windows 10)
• up to $100,000 USD

• Bounty for Defense (Windows 10)
• up to $100,000 USD

• https://technet.microsoft.com/en-US/security/dn425036
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https://technet.microsoft.com/en-US/security/dn425036


Linux
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Linux - setuid

• Sometimes we want to specify that a file can only be modified by a 
certain program.

• Thus, we want to control access on a per-program, rather than a per-
user basis.

• We can achieve this by creating a new user, representing the role of a 
modifier for these files.

• Mark the program, as setuid to this user.

• This means, no matter who started the program, it will run under the 
user id of this new user.
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LUKS – Full-disk encryption   [3]

• A master key is generated by the system (used to encrypt/decrypt 
data on disk)

• Protected using the user’s password

• Several master keys are stored, one for each user
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Linux Security Modules (2002) [6]

• IPC Hooks

• Filesystem Hooks

• Network Hooks
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SELinux

• Mandatory Access Control system for Linux

• Implement Flask architecture [7]

• A process (a daemon or a running program) is called a subject.

• A role defines which users can access that process.

• An object in SELinux is anything that can be acted upon

• A file's context is called its type in SELinux lingo

• Labels are in the format user:role:type:level (level is optional)
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SELinux

• An SELinux policy defines user access to roles, role access to domains, and 
domain access to types.

• Possible modes are Enforcing, Permissive, or Disabled

• -rw-r--r--. root root
unconfined_u:object_r:httpd_sys_content_t:s0 
/var/www/html/index.html

• system_u:system_r:httpd_t:s0     7126 ?        
00:00:00 httpd

• sesearch --allow --source httpd_t --target 
httpd_sys_content_t --class file
• allow httpd_t httpd_sys_content_t : file { ioctl read 
getattr lock open } ;
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Apparmor

• Mandatory Access Control (MAC)

• Per path profile

• Enforcement and complain mode

© Mihai Chiroiu 27



Apparmor

From /etc/apparmor.d/usr.sbin.tcpdump on Ubuntu 9.04:

/usr/sbin/tcpdump {

#include <abstractions/user-tmp>

capability setuid,

network raw,

network packet,

@{PROC}/bus/usb/ r,

@{PROC}/bus/usb/** r,

audit deny @{HOME}/bin/ rw,

audit deny @{HOME}/bin/** mrwkl,

@{HOME}/ r,

/usr/sbin/tcpdump r,

}
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Android
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Android Architecture
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Package (APK) integrity

• Components of applications
• Activity: User interface

• Service: Background service

• Content Provider: SQL-like database

• Broadcast receiver: Mailbox for broadcasted messages

• META-INF contains the application certificate and package manifest

• Certified by developer

• Used for: application upgrade; application modularity (two apps from 
same developer can collude); 
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Android Security Basics

• Applications, by default, have no permissions

• Applications statically declare the permissions they require
• Android system prompts the user for consent at the time the application is 

installed 

• No mechanism for granting permissions dynamically (at run-time) 

• In AndroidManifest.xml, add one or more <uses-permission> tags

• e.g., <uses-permission android:name= "android.permission.RECEIVE_SMS" />
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http://developer.android.com/reference/android/R.styleable.html#AndroidManifestUsesPermission


Android Sandbox

• Each application is isolated in its own sandbox 
• Applications can access only its own resources 

• Access to sensitive resources depends on the application’s rights 

• Enforced by underlying Linux Kernel (SELinux) and middleware

• Each App is assigned a unique UserID during installation and runs in 
separate process 
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Android Sandbox
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Android Sandbox

• App UID must be member of a Linux group to have access to sockets, 
etc. 

• UID of an app with corresponding permission is added to group 
during install 

• Kernel access errors translated into Java security exceptions by core 
libraries 
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Isolated Processes

• Security-aware application developer can declare in application 
manifest that a Service component should be executed as an isolated 
process 
• Component executed on separate process with UID nobody

• Nobody is a UID with no privileges 
• All permission checks will return deny 

• No file system access 

• only communication with it is through the Service API 

• Allows compartmentalization of the app 
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iOS
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iOS Architecture
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iOS Protection Mechanisms

• Encrypted file system

• Applications signing

• Vetting processs (app reviewing) 
• 700 - 1000 apps are submitted each day [Apple]

• Address Space Layout Randomization (ASLR)

• Non-executable memory security model (with code signing on 
memory pages)
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Sandboxing

• Enforcement at the Objective-C runtime layer
• That could be bypassed

• Enforcement by the TrustedBSD kernel module
• Based on a generic profile that forces application containment (for IPC and 

files) 

• Custom rules added by users are allowed
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Hypervisor security
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Security possibilities

• VM introspection

• Dom0 dissagregation
• Driver domains

• Xen Security Module (same as LSM)
• Restricts hypercalls to those needed by a particular guest
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Formally verified security kernel
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seL4 [4]

• Based on a minimal L4 kernel 
(drivers are outside kernel, user-
mode processes)

• A refinement proof establishes a 
correspondence between a high-
level (abstract) and a low-level 
(concrete, or refined) 
representation of a system.
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