
Introduction to Computer
Security Lecture Slides

© 2023 by Mihai Chiroiu

is licensed under Attribution-NonCommercial-ShareAlike 4.0
International

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Operating Systems Security
Associate Prof. Mihai Chiroiu

• There was once a young man who, in his youth, professed
his desire to become a great writer. When asked to define
"Great" he said, "I want to write stuff that the whole world
will read, stuff that people will react to on a truly emotional
level, stuff that will make them scream, cry, howl in pain and
anger!" He now works for Microsoft, writing error messages.

© Mihai Chiroiu 3

OS principles

• hardware abstraction

• resource management: accounting, scheduling, and synchronisation

• storage and communication services: file systems, network, inter-
process communication (IPC)

• libraries of common functions: libc

• management of user interaction and interface

• More here: http://ocw.cs.pub.ro/courses/so

© Mihai Chiroiu 4

Stats (all time)

© Mihai Chiroiu 5

https://www.cvedetails.com/top-50-products.php

https://www.cvedetails.com/top-50-products.php

What should the OS protect?

• Itself (from users)

• Processes (both services and user’s application)

• Files access

• Communication (both IPC and network)

© Mihai Chiroiu 6

First, authentication

• Most common technique are passwords (i.e., something you know)
• Stored as hashes typically using a random salt

• Tokens (i.e., something you have)
• Using HSM

• Often combined with a PIN

• Biometrics (i.e., something you are)
• Fingerprints, iris scans, etc.

• We will assume that authentication is validated!

© Mihai Chiroiu 7

Windows 10

© Mihai Chiroiu 8

Virtualization-based security (VBS)

© Mihai Chiroiu 9

User space

Kernel space

Normal World Secure World

NTOS

App1 App2

Secure Kernel (Shim
layer)

Second Level Address Translation
(1-1 without access)

Second Level Address Translation
(1-1 with access)

Trusted Hyper-V

Trusted services
(e.g., encryption

RPC
Shared memory

VBS in the (private) cloud

© Mihai Chiroiu 10

Code Integrity

• Kernel Mode Code Integrity (KMCI)
• Validate drivers’ signature

• User Mode Code Integrity (UMCI)
• Validate apps signature

• AppLocker
• Policy for what applications can be executed

© Mihai Chiroiu 11

Protected Processes

• Windows 10 prevents untrusted processes from interacting or
tampering with those that have been specially signed.

• Protected Processes defines levels of trust for processes.

• Less trusted processes are prevented from interacting with and
therefore attacking more trusted processes.

© Mihai Chiroiu 12

Address Space Layout Randomization (ASLR)

© Mihai Chiroiu 13

• Present in most OSes

• Not a real solution

(part of a complex one) [1]

ASLR implementation

• On Windows, ASLR does not affect runtime performance, but it can
slow down the initial loading of modules.
• ASLR also randomizes heap and stack memory

• On Linux, ASLR imposes 26% [9]

• On Android, ASLR bases for all others and the bases remain constant
across executions [10]

• On iOS, dyld_shared_cache (libraries) load address is randomized (at
boot time) [11]

• ASLR cannot be force-enabled for applications on Linux (they must be
compiled with PIE), as EMET can do on Windows.

© Mihai Chiroiu 14

Data Execution Prevention (DEP)

• DEP uses the No eXecute bit on modern CPUs

• Available on all major Oses

• Not real use if you can access mprotect/VirtualProtect/etc.

© Mihai Chiroiu 15

TrueCrypt - Full-disk encryption (3rd party)

• Password used to encrypt/decrypt when mounting the partition.

• Supports plausible deniability
• can be configured to hide even the existence of encrypted data.

• Unused space on an encrypted partition is initialized with random data,
encrypted volume is indistinguishable from such random data.

© Mihai Chiroiu 16

BitLocker – Full-disk encryption

• Encrypting entire hard drives

• Support for Self-Encrypting Drives (SED) for offloading encryption

• Uses Trusted Platform Module (TPM) v1.2 to validate pre-OS
components

© Mihai Chiroiu 17

Where’s the Encryption Key?

1. SRK (Storage Root Key)
contained in TPM

2. SRK encrypts FVEK (Full Volume
Encryption Key) protected by
TPM/PIN/USB Storage Device

3. FVEK stored (encrypted by SRK) on
hard drive in the OS Volume

System

OS Volume

3

2 FVEK 1 SRK

File permissions

• Stored as an ACE in a discretionary access control list (DACL) that is
part of the object’s security descriptor.

• Permissions can also be explicitly denied.

• Inherited permissions are those that are propagated to a child object
from a parent object.

© Mihai Chiroiu 18

Network access

• Per application firewall

© Mihai Chiroiu 19

Microsoft Bounty Programs

• Online Services Bug Bounty (Microsoft Azure services additions: 22nd
April 2015)
• $500 USD up to $15,000 USD.

• Mitigation Bypass Bounty (Windows 10)
• up to $100,000 USD

• Bounty for Defense (Windows 10)
• up to $100,000 USD

• https://technet.microsoft.com/en-US/security/dn425036

© Mihai Chiroiu 20

https://technet.microsoft.com/en-US/security/dn425036

Linux

© Mihai Chiroiu 21

Linux - setuid

• Sometimes we want to specify that a file can only be modified by a
certain program.

• Thus, we want to control access on a per-program, rather than a per-
user basis.

• We can achieve this by creating a new user, representing the role of a
modifier for these files.

• Mark the program, as setuid to this user.

• This means, no matter who started the program, it will run under the
user id of this new user.

© Mihai Chiroiu 22

LUKS – Full-disk encryption [3]

• A master key is generated by the system (used to encrypt/decrypt
data on disk)

• Protected using the user’s password

• Several master keys are stored, one for each user

© Mihai Chiroiu 23

Linux Security Modules (2002) [6]

• IPC Hooks

• Filesystem Hooks

• Network Hooks

© Mihai Chiroiu 24

SELinux

• Mandatory Access Control system for Linux

• Implement Flask architecture [7]

• A process (a daemon or a running program) is called a subject.

• A role defines which users can access that process.

• An object in SELinux is anything that can be acted upon

• A file's context is called its type in SELinux lingo

• Labels are in the format user:role:type:level (level is optional)

© Mihai Chiroiu 25

SELinux

• An SELinux policy defines user access to roles, role access to domains, and
domain access to types.

• Possible modes are Enforcing, Permissive, or Disabled

• -rw-r--r--. root root
unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/index.html

• system_u:system_r:httpd_t:s0 7126 ?
00:00:00 httpd

• sesearch --allow --source httpd_t --target
httpd_sys_content_t --class file
• allow httpd_t httpd_sys_content_t : file { ioctl read
getattr lock open } ;

© Mihai Chiroiu 26

Apparmor

• Mandatory Access Control (MAC)

• Per path profile

• Enforcement and complain mode

© Mihai Chiroiu 27

Apparmor

From /etc/apparmor.d/usr.sbin.tcpdump on Ubuntu 9.04:

/usr/sbin/tcpdump {

#include <abstractions/user-tmp>

capability setuid,

network raw,

network packet,

@{PROC}/bus/usb/ r,

@{PROC}/bus/usb/** r,

audit deny @{HOME}/bin/ rw,

audit deny @{HOME}/bin/** mrwkl,

@{HOME}/ r,

/usr/sbin/tcpdump r,

}

© Mihai Chiroiu 28

Android

© Mihai Chiroiu 29

Android Architecture

© Mihai Chiroiu 30

Package (APK) integrity

• Components of applications
• Activity: User interface

• Service: Background service

• Content Provider: SQL-like database

• Broadcast receiver: Mailbox for broadcasted messages

• META-INF contains the application certificate and package manifest

• Certified by developer

• Used for: application upgrade; application modularity (two apps from
same developer can collude);

© Mihai Chiroiu 31

Android Security Basics

• Applications, by default, have no permissions

• Applications statically declare the permissions they require
• Android system prompts the user for consent at the time the application is

installed

• No mechanism for granting permissions dynamically (at run-time)

• In AndroidManifest.xml, add one or more <uses-permission> tags

• e.g., <uses-permission android:name= "android.permission.RECEIVE_SMS" />

© Mihai Chiroiu 32

http://developer.android.com/reference/android/R.styleable.html#AndroidManifestUsesPermission

Android Sandbox

• Each application is isolated in its own sandbox
• Applications can access only its own resources

• Access to sensitive resources depends on the application’s rights

• Enforced by underlying Linux Kernel (SELinux) and middleware

• Each App is assigned a unique UserID during installation and runs in
separate process

© Mihai Chiroiu 33

Android Sandbox

© Mihai Chiroiu 34

Android Sandbox

• App UID must be member of a Linux group to have access to sockets,
etc.

• UID of an app with corresponding permission is added to group
during install

• Kernel access errors translated into Java security exceptions by core
libraries

© Mihai Chiroiu 35

Isolated Processes

• Security-aware application developer can declare in application
manifest that a Service component should be executed as an isolated
process
• Component executed on separate process with UID nobody

• Nobody is a UID with no privileges
• All permission checks will return deny

• No file system access

• only communication with it is through the Service API

• Allows compartmentalization of the app

© Mihai Chiroiu 36

iOS

© Mihai Chiroiu 37

iOS Architecture

© Mihai Chiroiu 38

Application Layer

System apps Third party apps

Browser SMS Facebook Skype

Objective-C Framework Layer

Core OS Layer
(iOS kernel)

Drivers
File

System
TrustedBSD MAC

Framework

Objective-C
Runtime

Objective-C/Swift Public Frameworks

SMS Phone Calendar …

Objective-C Private Frameworks

Contacts Location …Images

Network

Available to
Developers

iOS Protection Mechanisms

• Encrypted file system

• Applications signing

• Vetting processs (app reviewing)
• 700 - 1000 apps are submitted each day [Apple]

• Address Space Layout Randomization (ASLR)

• Non-executable memory security model (with code signing on
memory pages)

© Mihai Chiroiu 39

Sandboxing

• Enforcement at the Objective-C runtime layer
• That could be bypassed

• Enforcement by the TrustedBSD kernel module
• Based on a generic profile that forces application containment (for IPC and

files)

• Custom rules added by users are allowed

© Mihai Chiroiu 40

© Mihai Chiroiu 41

https://blog.bytebytego.com/i/74750876/how
-do-apple-pay-and-google-pay-handle-
sensitive-card-info

https://blog.bytebytego.com/i/74750876/how-do-apple-pay-and-google-pay-handle-sensitive-card-info
https://blog.bytebytego.com/i/74750876/how-do-apple-pay-and-google-pay-handle-sensitive-card-info
https://blog.bytebytego.com/i/74750876/how-do-apple-pay-and-google-pay-handle-sensitive-card-info

Hypervisor security

© Mihai Chiroiu 42

Security possibilities

• VM introspection

• Dom0 dissagregation
• Driver domains

• Xen Security Module (same as LSM)
• Restricts hypercalls to those needed by a particular guest

© Mihai Chiroiu 43

Formally verified security kernel

© Mihai Chiroiu 44

seL4 [4]

• Based on a minimal L4 kernel
(drivers are outside kernel, user-
mode processes)

• A refinement proof establishes a
correspondence between a high-
level (abstract) and a low-level
(concrete, or refined)
representation of a system.

© Mihai Chiroiu 45

Abstract Model

Binary Code

C Implementation

Proof

Proof

No buffer
overflow, stack
smashing, ROP,
code injection

No need to trust
the compiler

References

• [1] https://www.trust.informatik.tu-
darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-
rop.pdf

• [2] https://technet.microsoft.com/en-
us/library/mt601297(v=vs.85).aspx

• [3] https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-
standard/on-disk-format.pdf

• [4] http://web1.cs.columbia.edu/~junfeng/09fa-
e6998/papers/sel4.pdf

© Mihai Chiroiu 46

https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-rop.pdf
https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-rop.pdf
https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-rop.pdf
https://technet.microsoft.com/en-us/library/mt601297(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/mt601297(v=vs.85).aspx
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
http://web1.cs.columbia.edu/~junfeng/09fa-e6998/papers/sel4.pdf
http://web1.cs.columbia.edu/~junfeng/09fa-e6998/papers/sel4.pdf

References

• [5] https://opensource.com/business/13/11/selinux-policy-guide

• [6]
https://www.usenix.org/legacy/event/sec02/full_papers/wright/wrig
ht.pdf

• [7] https://www.nsa.gov/research/_files/publications/flask.pdf

• [8] http://css.csail.mit.edu/6.858/2012/readings/android.pdf

• [9] http://nebelwelt.net/publications/files/12TRpie.pdf

© Mihai Chiroiu 47

https://opensource.com/business/13/11/selinux-policy-guide
https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright.pdf
https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright.pdf
https://www.nsa.gov/research/_files/publications/flask.pdf
http://css.csail.mit.edu/6.858/2012/readings/android.pdf
http://nebelwelt.net/publications/files/12TRpie.pdf

References

• [10] https://copperhead.co/blog/2015/05/11/aslr-android-zygote

• [11]
http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Ni
ghtmare_FINAL.pdf

• [12] https://doi.org/10.1002/cpe.4180

© Mihai Chiroiu 48

https://copperhead.co/blog/2015/05/11/aslr-android-zygote
http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf

	Slide 1: Introduction to Computer Security Lecture Slides
	Slide 2: Operating Systems Security
	Slide 3
	Slide 4: OS principles
	Slide 5: Stats (all time)
	Slide 6: What should the OS protect?
	Slide 7: First, authentication
	Slide 8: Windows 10
	Slide 9: Virtualization-based security (VBS)
	Slide 10: VBS in the (private) cloud
	Slide 11: Code Integrity
	Slide 12: Protected Processes
	Slide 13: Address Space Layout Randomization (ASLR)
	Slide 14: ASLR implementation
	Slide 15: Data Execution Prevention (DEP)
	Slide 16: TrueCrypt - Full-disk encryption (3rd party)
	Slide 17: BitLocker – Full-disk encryption
	Slide 18: File permissions
	Slide 19: Network access
	Slide 20: Microsoft Bounty Programs
	Slide 21: Linux
	Slide 22: Linux - setuid
	Slide 23: LUKS – Full-disk encryption [3]
	Slide 24: Linux Security Modules (2002) [6]
	Slide 25: SELinux
	Slide 26: SELinux
	Slide 27: Apparmor
	Slide 28: Apparmor
	Slide 29: Android
	Slide 30: Android Architecture
	Slide 31: Package (APK) integrity
	Slide 32: Android Security Basics
	Slide 33: Android Sandbox
	Slide 34: Android Sandbox
	Slide 35: Android Sandbox
	Slide 36: Isolated Processes
	Slide 37: iOS
	Slide 38: iOS Architecture
	Slide 39: iOS Protection Mechanisms
	Slide 40: Sandboxing
	Slide 41
	Slide 42: Hypervisor security
	Slide 43: Security possibilities
	Slide 44: Formally verified security kernel
	Slide 45: seL4 [4]
	Slide 46: References
	Slide 47: References
	Slide 48: References

