Introduction to Computer Security Lecture Slides

© 2023 by Mihai Chiroiu

is licensed under <u>Attribution-NonCommercial-ShareAlike 4.0</u> <u>International</u>

Operating Systems Security

Associate Prof. Mihai Chiroiu

 There was once a young man who, in his youth, professed his desire to become a great writer. When asked to define "Great" he said, "I want to write stuff that the whole world will read, stuff that people will react to on a truly emotional level, stuff that will make them scream, cry, howl in pain and anger!" He now works for Microsoft, writing error messages.

OS principles

- hardware abstraction
- resource management: accounting, scheduling, and synchronisation
- storage and communication services: file systems, network, interprocess communication (IPC)
- libraries of common functions: libc
- management of user interaction and interface
- More here: http://ocw.cs.pub.ro/courses/so

Top 50 Products By Total Number Of "Distinct" Vulnerabilities

Go to year: 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 All Time Leaders

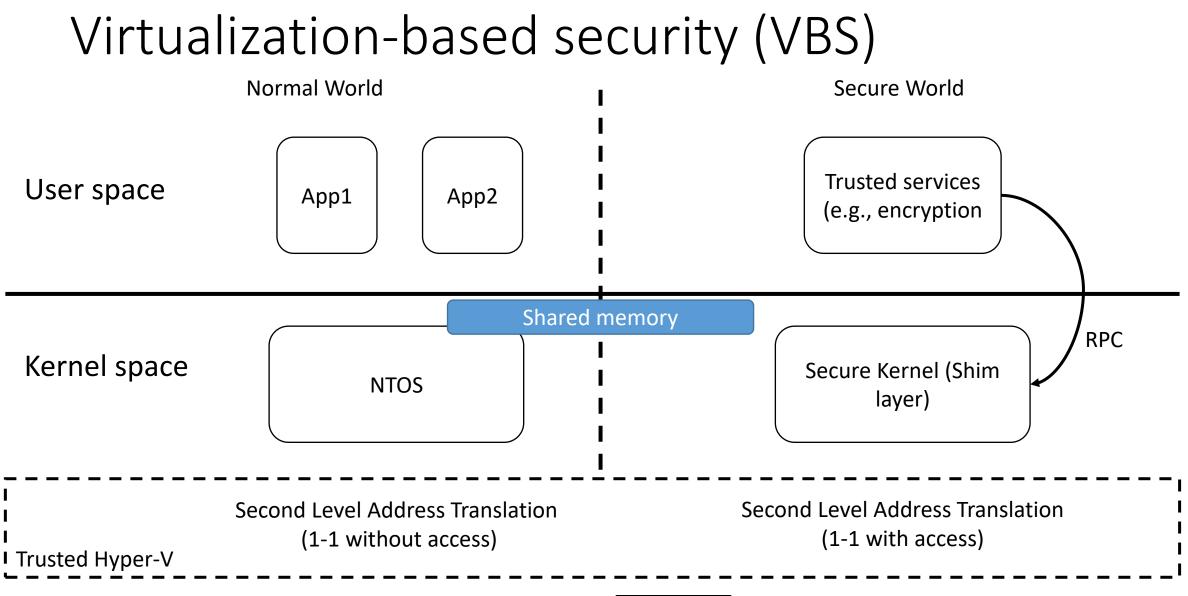
	Product Name	Vendor Name	Product Type	Number of Vulnerabilities
1	Debian Linux	Debian	os	<u>7410</u>
2	Android	Google	os	<u>4711</u>
3	<u>Fedora</u>	Fedoraproject	os	<u>4039</u>
4	<u>Ubuntu Linux</u>	Canonical	os	<u>3691</u>
5	Mac Os X	Apple	os	<u>3101</u>
6	Linux Kernel	<u>Linux</u>	os	<u>3012</u>
7	Windows 10	Microsoft	os	<u>2990</u>
8	Iphone Os	Apple	os	<u>2821</u>
9	Windows Server 2016	Microsoft	OS	<u>2764</u>
10	<u>Chrome</u>	Google	Application	<u>2574</u>
11	Windows Server 2008	<u>Microsoft</u>	OS	<u>2429</u>
12	Windows Server 2012	Microsoft	os	<u>2284</u>
13	Windows 7	Microsoft	os	2276
14	Windows Server 2019	Microsoft	os	2224
15	Windows 8.1	Microsoft	os	2132
16	<u>Firefox</u>	Mozilla	Application	<u>1994</u>
17	Windows Rt 8.1	Microsoft	OS	<u>1930</u>
18	Enterprise Linux Desktop	Redhat	os	<u>1804</u>
19	Enterprise Linux Server	Redhat	os	<u>1762</u>
20	<u>Leap</u>	<u>Opensuse</u>	OS	<u>1760</u>
21	Enterprise Linux Workstation	Redhat	os	<u>1722</u>
22	Tvos	Apple	os	<u>1440</u>
23	<u>Opensuse</u>	<u>Opensuse</u>	OS	<u>1372</u>
24	Enterprise Linux	Redhat	os	<u>1256</u>
25	Watchos	Apple	os	<u>1192</u>
26	<u>Mysql</u>	Oracle	Application	<u>1182</u>
27	Internet Explorer	Microsoft	Application	<u>1168</u>
28	<u>Safari</u>	Apple	Application	<u>1164</u>
29	Thunderbird	Mozilla	Application	<u>1038</u>
30	Enterprise Linux Server Aus	Redhat	os	869
31	Macos	Apple	os	<u>842</u>
32	Windows Vista	Microsoft	OS	<u>794</u>

https://www.cvedetails.com/top-50-products.php

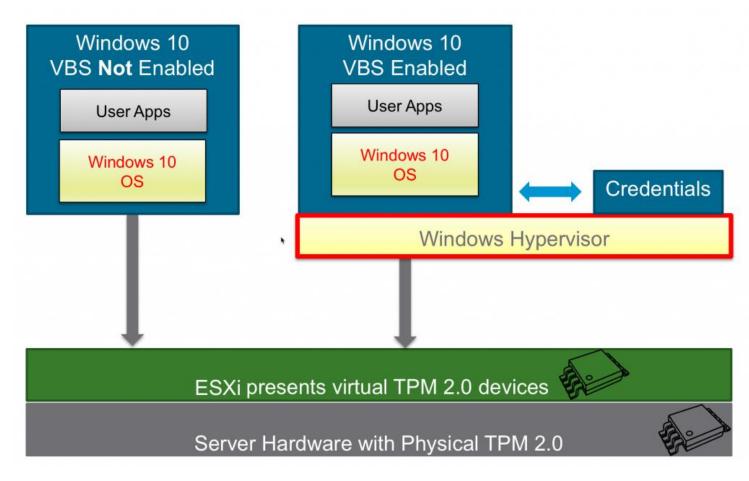
Stats (all time)

What should the OS protect?

- Itself (from users)
- Processes (both services and user's application)
- Files access
- Communication (both IPC and network)


First, authentication

- Most common technique are passwords (i.e., something you know)
 - Stored as hashes typically using a random salt
- Tokens (i.e., something you have)
 - Using HSM
 - Often combined with a PIN
- Biometrics (i.e., something you are)
 - Fingerprints, iris scans, etc.
- We will assume that authentication is validated!

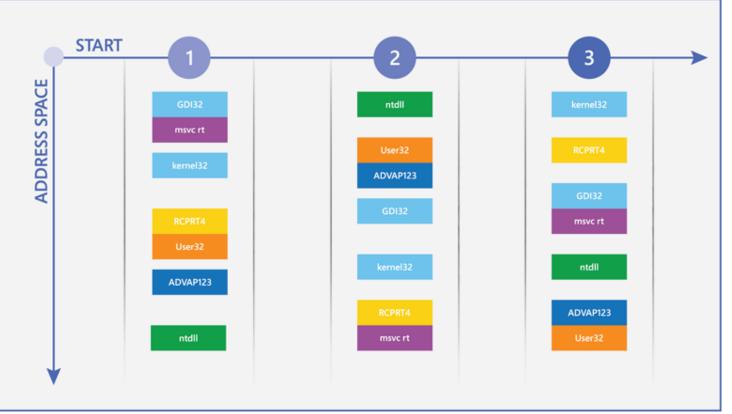

Windows 10

VBS in the (private) cloud

Code Integrity

- Kernel Mode Code Integrity (KMCI)
 - Validate drivers' signature
- User Mode Code Integrity (UMCI)
 - Validate apps signature
- AppLocker
 - Policy for what applications can be executed

Protected Processes


- Windows 10 prevents untrusted processes from interacting or tampering with those that have been specially signed.
- Protected Processes defines levels of trust for processes.
- Less trusted processes are prevented from interacting with and therefore attacking more trusted processes.

Address Space Layout Randomization (ASLR)

- Present in most OSes
- Not a real solution

(part of a complex one) [1]

ASLR implementation

- On Windows, ASLR does not affect runtime performance, but it can slow down the initial loading of modules.
 - ASLR also randomizes heap and stack memory
- On Linux, ASLR imposes 26% [9]
- On Android, ASLR bases for all others and the bases remain constant across executions [10]
- On iOS, dyld_shared_cache (libraries) load address is randomized (at boot time) [11]
- ASLR cannot be force-enabled for applications on Linux (they must be compiled with PIE), as EMET can do on Windows.

Data Execution Prevention (DEP)

- DEP uses the No eXecute bit on modern CPUs
- Available on all major Oses
- Not real use if you can access mprotect/VirtualProtect/etc.

TrueCrypt - Full-disk encryption (3rd party)

- Password used to encrypt/decrypt when mounting the partition.
- Supports plausible deniability
 - can be configured to hide even the existence of encrypted data.
 - Unused space on an encrypted partition is initialized with random data, encrypted volume is indistinguishable from such random data.

BitLocker – Full-disk encryption

- Encrypting entire hard drives
- Support for Self-Encrypting Drives (SED) for offloading encryption
- Uses Trusted Platform Module (TPM) v1.2 to validate pre-OS components

Where's the Encryption Key?

- 1. SRK (Storage Root Key) contained in TPM
- 2. SRK encrypts FVEK (Full Volume Encryption Key) protected by TPM/PIN/USB Storage Device
- 3. FVEK stored (encrypted by SRK) on hard drive in the OS Volume

File permissions

- Stored as an ACE in a discretionary access control list (DACL) that is part of the object's security descriptor.
- Permissions can also be explicitly denied.
- Inherited permissions are those that are propagated to a child object from a parent object.

Network access

• Per application firewall

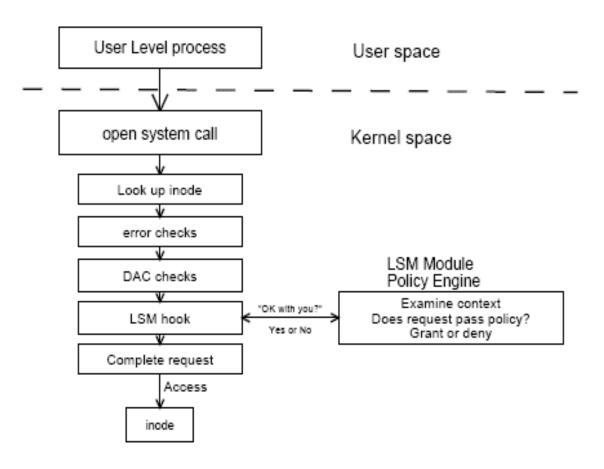
Microsoft Bounty Programs

- Online Services Bug Bounty (Microsoft Azure services additions: 22nd April 2015)
 - \$500 USD up to \$15,000 USD.
- Mitigation Bypass Bounty (Windows 10)
 - up to \$100,000 USD
- Bounty for Defense (Windows 10)
 - up to \$100,000 USD
- <u>https://technet.microsoft.com/en-US/security/dn425036</u>

Linux

Linux - setuid

- Sometimes we want to specify that a file can only be modified by a certain program.
- Thus, we want to control access on a per-program, rather than a peruser basis.
- We can achieve this by creating a new user, representing the role of a modifier for these files.
- Mark the program, as *setuid* to this user.
- This means, no matter who started the program, it will run under the user id of this new user.



LUKS – Full-disk encryption [3]

- A master key is generated by the system (used to encrypt/decrypt data on disk)
- Protected using the user's password
- Several master keys are stored, one for each user

Linux Security Modules (2002) [6]

- IPC Hooks
- Filesystem Hooks
- Network Hooks

SELinux

- Mandatory Access Control system for Linux
- Implement Flask architecture [7]
- A process (a daemon or a running program) is called a *subject*.
- A role defines which users can access that process.
- An *object* in SELinux is anything that can be acted upon
- A file's context is called its type in SELinux lingo
- Labels are in the format user:role:type:level (level is optional)

SELinux

- An SELinux policy defines user access to roles, role access to domains, and domain access to types.
- Possible modes are Enforcing, Permissive, or Disabled
- -rw-r--r--. root root unconfined u:object_r:httpd_sys_content_t:s0 /var/www/html/index.html
- system u:system_r:httpd_t:s0 7126 ? 00:00:00 httpd
- sesearch --allow --source httpd t --target httpd sys content t --class file
 - allow httpd t httpd_sys_content_t : file { ioctl read
 getattr lock open };

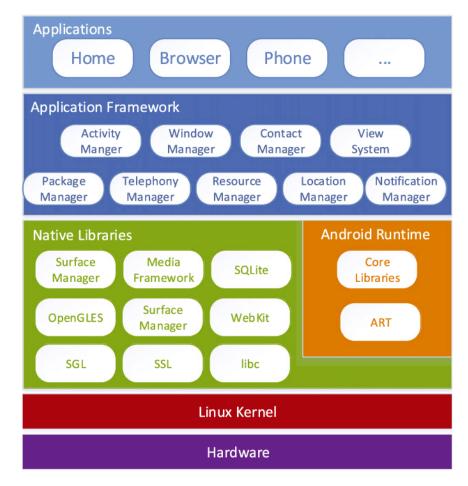
Apparmor

- Mandatory Access Control (MAC)
- Per path profile
- Enforcement and complain mode

Apparmor

```
From /etc/apparmor.d/usr.sbin.tcpdump on Ubuntu 9.04:
/usr/sbin/tcpdump {
    #include <abstractions/user-tmp>
    capability setuid,
    network raw,
    network packet,
    @{PROC}/bus/usb/ r,
    @{PROC}/bus/usb/ r,
    @{PROC}/bus/usb/** r,
```

```
audit deny @{HOME}/bin/** mrwkl,
@{HOME}/ r,
/usr/sbin/tcpdump r,
```



}

Android

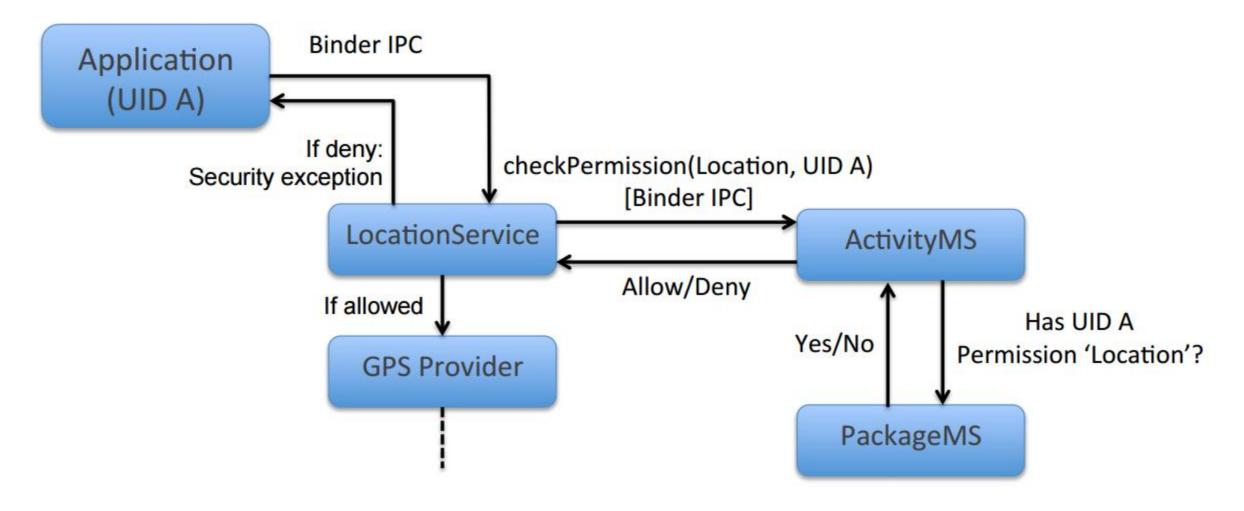
Android Architecture

Package (APK) integrity

- Components of applications
 - Activity: User interface
 - Service: Background service
 - Content Provider: SQL-like database
 - Broadcast receiver: Mailbox for broadcasted messages
- META-INF contains the application certificate and package manifest
- Certified by developer
- Used for: application upgrade; application modularity (two apps from same developer can collude);

Android Security Basics

- Applications, by default, have no permissions
- Applications statically declare the permissions they require
 - Android system prompts the user for consent at the time the application is installed
 - No mechanism for granting permissions dynamically (at run-time)
 - In AndroidManifest.xml, add one or more <u><uses-permission></u> tags
 - e.g., <uses-permission android:name= "android.permission.RECEIVE_SMS" />



Android Sandbox

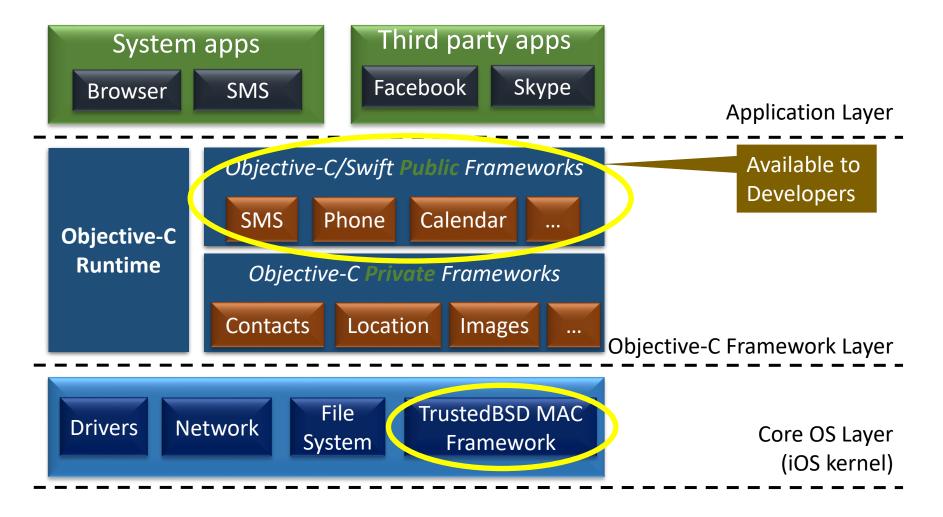
- Each application is isolated in its own sandbox
 - Applications can access only its own resources
 - Access to sensitive resources depends on the application's rights
- Enforced by underlying Linux Kernel (SELinux) and middleware
- Each App is assigned a unique UserID during installation and runs in separate process

Android Sandbox

Android Sandbox

- App UID must be member of a Linux group to have access to sockets, etc.
- UID of an app with corresponding permission is added to group during install
- Kernel access errors translated into Java security exceptions by core libraries

Isolated Processes

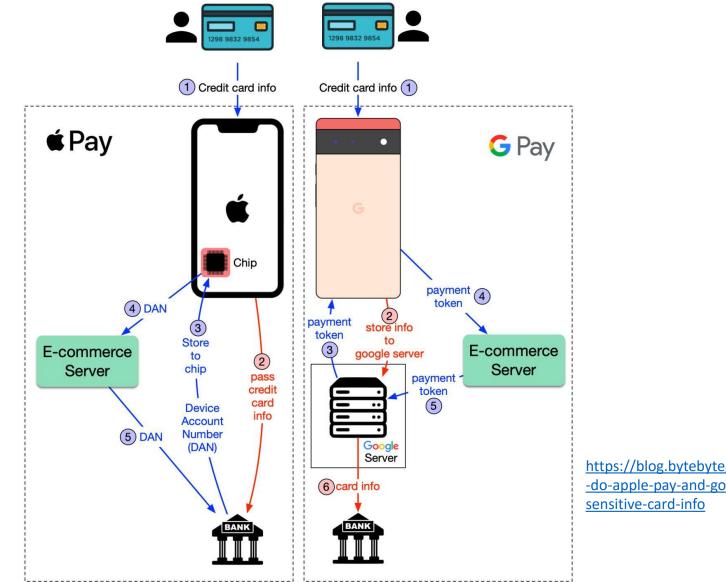

- Security-aware application developer can declare in application manifest that a Service component should be executed as an isolated process
 - Component executed on separate process with UID nobody
 - Nobody is a UID with no privileges
 - All permission checks will return deny
 - No file system access
 - only communication with it is through the Service API
- Allows compartmentalization of the app

iOS

iOS Architecture

iOS Protection Mechanisms

- Encrypted file system
- Applications signing
- Vetting processs (app reviewing)
 - 700 1000 apps are submitted each day [Apple]
- Address Space Layout Randomization (ASLR)
- Non-executable memory security model (with code signing on memory pages)


Sandboxing

- Enforcement at the Objective-C runtime layer
 - That could be bypassed
- Enforcement by the TrustedBSD kernel module
 - Based on a generic profile that forces application containment (for IPC and files)
- Custom rules added by users are allowed

Apple Pay and Google Pay Security

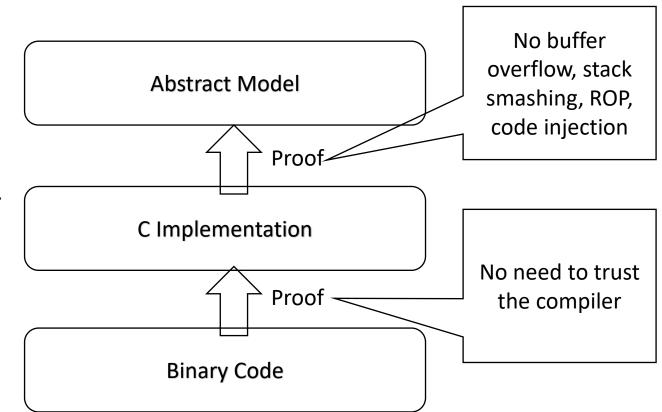
ByteByteGo.com

https://blog.bytebytego.com/i/74750876/how -do-apple-pay-and-google-pay-handlesensitive-card-info

Hypervisor security

Security possibilities

- VM introspection
- Dom0 dissagregation
 - Driver domains
- Xen Security Module (same as LSM)
 - Restricts hypercalls to those needed by a particular guest



Formally verified security kernel

seL4 [4]

- Based on a minimal L4 kernel (drivers are outside kernel, usermode processes)
- A refinement proof establishes a correspondence between a highlevel (abstract) and a low-level (concrete, or refined) representation of a system.

References

- [1] <u>https://www.trust.informatik.tu-</u> <u>darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-</u> <u>rop.pdf</u>
- [2] <u>https://technet.microsoft.com/en-us/library/mt601297(v=vs.85).aspx</u>
- [3] <u>https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-</u> <u>standard/on-disk-format.pdf</u>
- [4] <u>http://web1.cs.columbia.edu/~junfeng/09fa-e6998/papers/sel4.pdf</u>

References

- [5] <u>https://opensource.com/business/13/11/selinux-policy-guide</u>
- [6] <u>https://www.usenix.org/legacy/event/sec02/full_papers/wright/wrig</u> <u>ht.pdf</u>
- [7] <u>https://www.nsa.gov/research/_files/publications/flask.pdf</u>
- [8] <u>http://css.csail.mit.edu/6.858/2012/readings/android.pdf</u>
- [9] <u>http://nebelwelt.net/publications/files/12TRpie.pdf</u>

References

- [10] <u>https://copperhead.co/blog/2015/05/11/aslr-android-zygote</u>
- [11] http://antid0te.com/CSW2012 StefanEsser iOS5 An Exploitation Ni ghtmare FINAL.pdf
- [12] https://doi.org/10.1002/cpe.4180

